Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to the Nature of Earth’s Mysterious Core Found Beneath Arctic Ice

17.10.2002


In the high Canadian Arctic, researchers at the University of Rochester have stripped away some of the mystery surrounding the powerhouse that drives the Earth’s magnetic field. The research strongly suggests that several of the characteristics of the field that were long thought to operate independently of one another, such as the field’s polarity and strength, may be linked. If so, then the strength of the field, which has been waning for several thousand years, may herald a pole reversal-a time where compasses all over the Earth would point south instead of north. The findings are being published in today’s issue of Proceedings of the National Academy of Sciences.



John Tarduno, professor of geophysics, took 14 students on four excursions, the most recent in the summer of 2000, far above the Arctic Circle to pitch tents near 95-million-year-old rocks on the snow-covered islands of Ellesmere and Axel Heiberg. The rocks, part of a formation called the Strand Fiord, were spewed forth from ancient volcanoes during a time when the Earth’s magnetic field was particularly stable. As the volcanoes’ lava cooled to become igneous rock, tiny crystals lined up with the Earth’s magnetic field and were solidified in the rock. Tarduno was seeking these crystals and the data they preserved about the magnetic field.

Tarduno wanted to find whether the crystals in this region bore evidence of brief fluctuations in the magnetic field. Several more accessible areas of the globe house such crystals, but Tarduno had to go to the edge of the "tangent cylinder"-a giant, theoretical cylinder that runs through the Earth like a pimento through an olive. This cylinder extends away from the Earth’s solid iron core to the north and south poles and represents an area of possible high turbulence in the molten iron of the core, stirred up by the Earth’s spin. Near the edge of this cylinder of turbulence scientists believe the liquid iron should be the most chaotic, twisting up the magnetic lines of force. Where this edge contacts the Earth’s crust high above the Arctic Circle should lie traces of the twisted magnetic field in the crystals.


But not just any place along this edge would do. Tarduno needed to find rocks around 95 million years old because they were formed in the middle of an ancient time of highly unusual magnetic stability. That time of stability, called a superchron, lasted for tens of millions of years-a rarity when magnetic reversals can happen in as little as a few tens of thousands of years. Tarduno wanted to know how stable or chaotic the magnetic field was during that time along the supposedly turbulent edge of the tangent cylinder. If the field was chaotic during the stable superchron, then there would probably be no correlation between north-south pole reversals and the way molten iron in the core generated that field. On the other hand, if the field near the cylinder’s edge was stable throughout the superchron, then it becomes more likely that turbulence in the liquid outer core was related to making the Earth’s poles reverse. The answer would peel away another layer of mystery about how the Earth generates its magnetic field.

Above the Arctic Circle, just 11 degrees south of the North Pole, Tarduno and his students pitched tents near the volcanic strata of the Strand Fiord Formation to find and retrieve layers from the 95-million-year-old superchron on the edge of the tangent cylinder. Before they could drill into the rock to retrieve samples, however, they had to precisely note which way the North Pole lay so that they could tell if the crystals in their samples showed any sign of a full or partial pole reversal. Compasses were useless because at their latitude they were actually farther north than the epicenter of the magnetic north pole, and though that could have been corrected for, at such high latitudes solar winds can create unpredictable variations in the field. The network of satellites that makes up the Global Positioning System were likewise useless because much of the drilling had to be done in deep, narrow valleys where the satellites’ signals couldn’t penetrate. The team had to use a sun compass, a way to gauge direction using knowledge of where the sun is at a specific time of day. Once they had determined which way the true North Pole lay, Tarduno and his students drilled out several sections of the 95-million-year-old rock, labeled it, and packed it up to be shipped back to the University of Rochester.

Once back at the University, Tarduno used a SQUID magnetometer, a device that can detect extremely minute amounts of magnetism in small samples, to determine the direction and intensity of the magnetic signature sealed in the crystals in the rock. What they found was that there was little deviation in the direction or intensity in the field, even though the molten iron beneath was theoretically very turbulent. This suggests that the fluctuations in the iron of the inner core of the Earth were not contorting the magnetic field but were efficiently creating a stable and intense field.

This study shows a correlation between the stability of the poles and the intensity of the field, meaning there’s likely a single mechanism in the Earth governing the magnetic field. The news comes as a bit of a relief for scientists who would otherwise have to uncover multiple interacting mechanisms to create a working model.

The findings also suggest that humanity is in for a surprise in the not-too-distant future. Since the Earth’s magnetic field has been decreasing in intensity for the last several thousand years, and the intensity and likelihood of pole reversals are linked, in as little as a few centuries we may see the Earth’s magnetic poles flip, sending everyone’s compasses angling toward the South Pole.

Tarduno plans to extend these studies into the very ancient Earth in the hopes of discovering how the Earth came to have a magnetic field at all.

The research was funded by the National Science Foundation and the Canadian Polar Shelf Project.

Jonathan Sherwood | EurekAlert!

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>