Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to the Nature of Earth’s Mysterious Core Found Beneath Arctic Ice

17.10.2002


In the high Canadian Arctic, researchers at the University of Rochester have stripped away some of the mystery surrounding the powerhouse that drives the Earth’s magnetic field. The research strongly suggests that several of the characteristics of the field that were long thought to operate independently of one another, such as the field’s polarity and strength, may be linked. If so, then the strength of the field, which has been waning for several thousand years, may herald a pole reversal-a time where compasses all over the Earth would point south instead of north. The findings are being published in today’s issue of Proceedings of the National Academy of Sciences.



John Tarduno, professor of geophysics, took 14 students on four excursions, the most recent in the summer of 2000, far above the Arctic Circle to pitch tents near 95-million-year-old rocks on the snow-covered islands of Ellesmere and Axel Heiberg. The rocks, part of a formation called the Strand Fiord, were spewed forth from ancient volcanoes during a time when the Earth’s magnetic field was particularly stable. As the volcanoes’ lava cooled to become igneous rock, tiny crystals lined up with the Earth’s magnetic field and were solidified in the rock. Tarduno was seeking these crystals and the data they preserved about the magnetic field.

Tarduno wanted to find whether the crystals in this region bore evidence of brief fluctuations in the magnetic field. Several more accessible areas of the globe house such crystals, but Tarduno had to go to the edge of the "tangent cylinder"-a giant, theoretical cylinder that runs through the Earth like a pimento through an olive. This cylinder extends away from the Earth’s solid iron core to the north and south poles and represents an area of possible high turbulence in the molten iron of the core, stirred up by the Earth’s spin. Near the edge of this cylinder of turbulence scientists believe the liquid iron should be the most chaotic, twisting up the magnetic lines of force. Where this edge contacts the Earth’s crust high above the Arctic Circle should lie traces of the twisted magnetic field in the crystals.


But not just any place along this edge would do. Tarduno needed to find rocks around 95 million years old because they were formed in the middle of an ancient time of highly unusual magnetic stability. That time of stability, called a superchron, lasted for tens of millions of years-a rarity when magnetic reversals can happen in as little as a few tens of thousands of years. Tarduno wanted to know how stable or chaotic the magnetic field was during that time along the supposedly turbulent edge of the tangent cylinder. If the field was chaotic during the stable superchron, then there would probably be no correlation between north-south pole reversals and the way molten iron in the core generated that field. On the other hand, if the field near the cylinder’s edge was stable throughout the superchron, then it becomes more likely that turbulence in the liquid outer core was related to making the Earth’s poles reverse. The answer would peel away another layer of mystery about how the Earth generates its magnetic field.

Above the Arctic Circle, just 11 degrees south of the North Pole, Tarduno and his students pitched tents near the volcanic strata of the Strand Fiord Formation to find and retrieve layers from the 95-million-year-old superchron on the edge of the tangent cylinder. Before they could drill into the rock to retrieve samples, however, they had to precisely note which way the North Pole lay so that they could tell if the crystals in their samples showed any sign of a full or partial pole reversal. Compasses were useless because at their latitude they were actually farther north than the epicenter of the magnetic north pole, and though that could have been corrected for, at such high latitudes solar winds can create unpredictable variations in the field. The network of satellites that makes up the Global Positioning System were likewise useless because much of the drilling had to be done in deep, narrow valleys where the satellites’ signals couldn’t penetrate. The team had to use a sun compass, a way to gauge direction using knowledge of where the sun is at a specific time of day. Once they had determined which way the true North Pole lay, Tarduno and his students drilled out several sections of the 95-million-year-old rock, labeled it, and packed it up to be shipped back to the University of Rochester.

Once back at the University, Tarduno used a SQUID magnetometer, a device that can detect extremely minute amounts of magnetism in small samples, to determine the direction and intensity of the magnetic signature sealed in the crystals in the rock. What they found was that there was little deviation in the direction or intensity in the field, even though the molten iron beneath was theoretically very turbulent. This suggests that the fluctuations in the iron of the inner core of the Earth were not contorting the magnetic field but were efficiently creating a stable and intense field.

This study shows a correlation between the stability of the poles and the intensity of the field, meaning there’s likely a single mechanism in the Earth governing the magnetic field. The news comes as a bit of a relief for scientists who would otherwise have to uncover multiple interacting mechanisms to create a working model.

The findings also suggest that humanity is in for a surprise in the not-too-distant future. Since the Earth’s magnetic field has been decreasing in intensity for the last several thousand years, and the intensity and likelihood of pole reversals are linked, in as little as a few centuries we may see the Earth’s magnetic poles flip, sending everyone’s compasses angling toward the South Pole.

Tarduno plans to extend these studies into the very ancient Earth in the hopes of discovering how the Earth came to have a magnetic field at all.

The research was funded by the National Science Foundation and the Canadian Polar Shelf Project.

Jonathan Sherwood | EurekAlert!

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>