Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientist adds third dimension to earth beneath our feet

15.10.2002


The swirl of malleable rock in the earth’s mantle – located between the earth’s crust and core – may have greater effect on the earth’s surface than was once believed, a Purdue research team reports.


Under the boundary between two crustal plates, zones in the mantle with different temperatures swirl together like storm fronts in the atmosphere. Over the millennia, these subterranean warm and cold fronts produce storms in the mantle that can move mountains up on the crust. (Image provided by Scott D. King)


Seen from below, a cold region (colored blue) is sandwiched between two warmer regions (yellow). Over millions of years, these subterranean "storms" can affect the motion of the crust and alter geographical features on the surface, as evidenced by the dramatic angle in the Hawaii-Emperor seamount chain. (Image provided by Scott D. King)



Using computer technology to create three-dimensional models of the earth’s mantle, Purdue’s Scott King has found evidence that some dramatic features of the earth’s surface could be the result of relatively rapid shifts in the direction in which crustal plates move. Rather than simply drifting along in straight lines over millions of years, plates can be pushed aside or even be made to reverse direction due to convection in the mantle far beneath them.

"This is not an idea that has been seriously considered before," said King, professor of earth and atmospheric sciences. "Up until this point, plates were thought to change direction more or less independently from the slow-moving mantle. But with the aid of better computer technology, now we are beginning to realize that they are interconnected. The third dimension is important – we have to consider the earth’s depths if we are ever to understand its surface."


The research, which will appear in the Oct. 15 print issue of Earth and Planetary Science Letters, could spur a rethinking of how major geological features, such as continents and mountain ranges, change shape over time.

Past theories considered crustal plates to be essentially flat objects that either broke into smaller pieces or slid under one another when they collided. The remote depths of the earth’s mantle were thought to have little effect on plate motion because of their own comparatively slow movement.

"The crustal plates themselves move very slowly – only a few inches a year," King said. "But the depths of the mantle were believed to move even more slowly than that. The accepted theory was that all the fast action was taking place near the surface, so the earth’s depths could be safely neglected when considering changes in plate motion."

But King and his colleagues were suspicious of some of the earth’s surface features, such as the Hawaii-Emperor seamount chain. This long string of undersea mountains formed one by one as the crust moved across a hot spot in the mantle, which over millions of years left a string of volcanoes on the Pacific’s floor. The chain of seamounts – some of which pierce the surface to form the Hawaiian Islands – takes a sharp turn from the northwest to the north around Midway Island, then stretches nearly as far as the Aleutians. While scientists had known about the bend in the seamount chain for years, no one had found a testable explanation for its existence.

"If the crust was just drifting along in the same direction, a mountain range would not have grown with such a sharp angle in it," King said. "We started to think that the crust was originally drifting northward, but that some other force must have changed its direction halfway along the line. However, until recently, it was difficult to peer deep enough into the earth to find that force."

A new perspective became possible when King and his colleagues gained access to powerful computer systems at Los Alamos National Laboratory and Purdue. These computers were able to crunch the huge quantities of data necessary to model the earth’s interior in three dimensions.

"The computers are like a window into the mantle," King said. "For the first time, we had tools that could translate a complicated set of equations about the mantle into visual maps the human eye can read."

Much as a CAT scan shows slices of the body, the 3-D maps King’s group produced show different slices of the planet. The cooler and warmer regions of the mantle, which are in constant flux hundreds of miles below our feet, twist around each other like gathering storm clouds. Over the millennia, these subterranean warm and cold fronts produce storms in the mantle that can move mountains up on the crust.

"In a sense, we’re trying to figure out the weather of the earth’s mantle," King said. "The ’storms’ take eons to manifest themselves, but over time they exert powerful force on crustal plates – enough, for example, to make a large part of the Pacific Ocean floor change its direction by about 45 degrees. That’s what we think we are seeing in the Hawaii-Emperor seamount chain."

King is optimistic that the group’s work will shed light on the movement of the earth’s crustal plates, but emphasizes that their theory – like others before it – is not yet the complete picture.

"One of the criticisms that our colleagues have made is that we concentrate on the third dimension, depth, at the expense of surface effects," King said. "Our computer model considers crustal plates as having a constant surface area. But we know that they can grow, crumble and shrink over time. We are working to include these factors in our computer models to improve our knowledge of the ground we walk on even further."

This research was a collaboration between King, Carl W. Gable of Los Alamos National Laboratory, and Julian Lowman of Leeds University. Funding was provided by the National Science Foundation, Los Alamos National Laboratory Institute of Geophysics and Planetary Physics, and Purdue.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Scott D. King, (765) 494-3696, sking@purdue.edu

Carl W. Gable, (505) 665-3533, gable@lanl.gov

Julian Lowman, (113) 343-5212, j.lowman@earth.leeds.ac.uk

Chad Boutin | Purdue News
Further information:
http://www.seismo.unr.edu/ftp/pub/louie/class/100/interior.html
http://www.eas.purdue.edu/%7Escott/surfing.html
http://www.eas.purdue.edu/%7Escott/mantle/mantle.html

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>