Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientist adds third dimension to earth beneath our feet

15.10.2002


The swirl of malleable rock in the earth’s mantle – located between the earth’s crust and core – may have greater effect on the earth’s surface than was once believed, a Purdue research team reports.


Under the boundary between two crustal plates, zones in the mantle with different temperatures swirl together like storm fronts in the atmosphere. Over the millennia, these subterranean warm and cold fronts produce storms in the mantle that can move mountains up on the crust. (Image provided by Scott D. King)


Seen from below, a cold region (colored blue) is sandwiched between two warmer regions (yellow). Over millions of years, these subterranean "storms" can affect the motion of the crust and alter geographical features on the surface, as evidenced by the dramatic angle in the Hawaii-Emperor seamount chain. (Image provided by Scott D. King)



Using computer technology to create three-dimensional models of the earth’s mantle, Purdue’s Scott King has found evidence that some dramatic features of the earth’s surface could be the result of relatively rapid shifts in the direction in which crustal plates move. Rather than simply drifting along in straight lines over millions of years, plates can be pushed aside or even be made to reverse direction due to convection in the mantle far beneath them.

"This is not an idea that has been seriously considered before," said King, professor of earth and atmospheric sciences. "Up until this point, plates were thought to change direction more or less independently from the slow-moving mantle. But with the aid of better computer technology, now we are beginning to realize that they are interconnected. The third dimension is important – we have to consider the earth’s depths if we are ever to understand its surface."


The research, which will appear in the Oct. 15 print issue of Earth and Planetary Science Letters, could spur a rethinking of how major geological features, such as continents and mountain ranges, change shape over time.

Past theories considered crustal plates to be essentially flat objects that either broke into smaller pieces or slid under one another when they collided. The remote depths of the earth’s mantle were thought to have little effect on plate motion because of their own comparatively slow movement.

"The crustal plates themselves move very slowly – only a few inches a year," King said. "But the depths of the mantle were believed to move even more slowly than that. The accepted theory was that all the fast action was taking place near the surface, so the earth’s depths could be safely neglected when considering changes in plate motion."

But King and his colleagues were suspicious of some of the earth’s surface features, such as the Hawaii-Emperor seamount chain. This long string of undersea mountains formed one by one as the crust moved across a hot spot in the mantle, which over millions of years left a string of volcanoes on the Pacific’s floor. The chain of seamounts – some of which pierce the surface to form the Hawaiian Islands – takes a sharp turn from the northwest to the north around Midway Island, then stretches nearly as far as the Aleutians. While scientists had known about the bend in the seamount chain for years, no one had found a testable explanation for its existence.

"If the crust was just drifting along in the same direction, a mountain range would not have grown with such a sharp angle in it," King said. "We started to think that the crust was originally drifting northward, but that some other force must have changed its direction halfway along the line. However, until recently, it was difficult to peer deep enough into the earth to find that force."

A new perspective became possible when King and his colleagues gained access to powerful computer systems at Los Alamos National Laboratory and Purdue. These computers were able to crunch the huge quantities of data necessary to model the earth’s interior in three dimensions.

"The computers are like a window into the mantle," King said. "For the first time, we had tools that could translate a complicated set of equations about the mantle into visual maps the human eye can read."

Much as a CAT scan shows slices of the body, the 3-D maps King’s group produced show different slices of the planet. The cooler and warmer regions of the mantle, which are in constant flux hundreds of miles below our feet, twist around each other like gathering storm clouds. Over the millennia, these subterranean warm and cold fronts produce storms in the mantle that can move mountains up on the crust.

"In a sense, we’re trying to figure out the weather of the earth’s mantle," King said. "The ’storms’ take eons to manifest themselves, but over time they exert powerful force on crustal plates – enough, for example, to make a large part of the Pacific Ocean floor change its direction by about 45 degrees. That’s what we think we are seeing in the Hawaii-Emperor seamount chain."

King is optimistic that the group’s work will shed light on the movement of the earth’s crustal plates, but emphasizes that their theory – like others before it – is not yet the complete picture.

"One of the criticisms that our colleagues have made is that we concentrate on the third dimension, depth, at the expense of surface effects," King said. "Our computer model considers crustal plates as having a constant surface area. But we know that they can grow, crumble and shrink over time. We are working to include these factors in our computer models to improve our knowledge of the ground we walk on even further."

This research was a collaboration between King, Carl W. Gable of Los Alamos National Laboratory, and Julian Lowman of Leeds University. Funding was provided by the National Science Foundation, Los Alamos National Laboratory Institute of Geophysics and Planetary Physics, and Purdue.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Scott D. King, (765) 494-3696, sking@purdue.edu

Carl W. Gable, (505) 665-3533, gable@lanl.gov

Julian Lowman, (113) 343-5212, j.lowman@earth.leeds.ac.uk

Chad Boutin | Purdue News
Further information:
http://www.seismo.unr.edu/ftp/pub/louie/class/100/interior.html
http://www.eas.purdue.edu/%7Escott/surfing.html
http://www.eas.purdue.edu/%7Escott/mantle/mantle.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>