Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thinking needed on atmospheric physics, study suggests

14.10.2002


Balloon Experiments Reveal New Information About Sprites



An atmospheric phenomenon called “sprites” could be pumping 50 times more energy into the upper atmosphere than was previously thought, suggesting our understanding of the global atmosphere is incomplete, according to University of Houston space physicists.

Sprites are large, brief flashes of light that occur very high in the atmosphere above large thunderstorms. Instead of discharging toward the earth like lightning, sprites soar upward above a thunderstorm and occur immediately following strong lightning strokes.


University of Houston physics professors Edgar Bering and James Benbrook, along with their students, collected sprite data during a balloon campaign in the summer of 1999 when several balloons equipped with special detectors flew high into the atmosphere – around 20 miles up – over Texas and Iowa. The experiments were intended to study the electromagnetic signature of the lightning strokes that produce sprites, as viewed from the perspective of the sprite.

“One of the more interesting things we discovered is that every lightning stroke tries to produce a sprite in the sense that it produces a similar but weaker electrodynamic pulse in the mesosphere,” Bering says.

The layers of the atmosphere consist of the troposphere, which extends from the ground to about nine miles up; the stratosphere, beginning just above the troposphere and extending to 31 miles high; the mesosphere, extending from the stratosphere to about 53 miles high; and the thermosphere, extending beyond the mesosphere to about 372 miles.

Previous research has shown that most sprites are produced by positive cloud to ground lightning strokes, which are much rarer than negative cloud to ground lightning strokes, Bering says. Negative cloud to ground lightning strokes are initiated by a large concentration of negative charge in the cloud base, which tends to induce an area of positive charge on the ground, resulting in a discharge of electricity – lightning. A positive lightning stroke is exactly the opposite, with a positive charge concentration in the cloud inducing a negatively charged area on the ground.

Bering and his colleagues also found that negative cloud to ground strokes produce a phenomenon that is not often observed from the ground, termed a sprite halo, which is basically a sprite precursor.

“We discovered that seven to ten times as many negative cloud to ground strokes produce sprite halos as do positive cloud to ground strokes. That, coupled with the fact that every cloud to ground stroke, positive or negative, tries to produce a sprite or sprite halo, indicates that the amount of energy being deposited in the mesosphere by these sprite processes and related processes exceeds what we thought the sprites did by a factor of 50.”

Bering says that amount of energy is comparable to the amount of energy the sun pumps into that same volume of atmosphere above the thunderstorm in daylight hours.

Bering will present an invited talk on the research findings at the World Space Congress 2002, to be held Oct. 10-19 in Houston.

The closest the balloon flights got to sprite-producing thunderstorms was about 300 kilometers, or 186 miles, which limited the amount of useful data the scientists could collect, Bering says. He cautions that the experiments need to be repeated because the results depended only on observations from a few storms.

However, he says the results of the balloon flights indicate our understanding of the mesosphere is incomplete.

“It means we actually have at certain times and latitudes about a factor of two discrepancy in the energy budget of the mesosphere. From the standpoint of global understanding of the atmosphere as a whole, a factor of two in an energy budget is nontrivial,” Bering says.

While the mesosphere does not directly affect weather on earth, and the altitude is too high for precipitation-producing clouds, some researchers are attempting the use mesospheric weather as a tracker for global temperature change.

Bering says the 1999 data suggests two avenues for future studies.

“We need to get closer to the storms, which requires both more balloons and also is a matter of luck, and put additional data collection equipment on board the balloons,” he says.

The National Aeronautics and Space Administration funded the 1999 balloon flights. Bering has submitted a proposal to NASA for additional balloon studies of sprites.

In January, Bering will begin a study of phenomena other than sprites when he sends three balloons into the air over Antarctica to study the electrodynamics of the polar ionosphere.
CONTACT: Edgar Bering, 713-743-3543; eabering@uh.edu

Amanda Siegfried | EurekAlert!
Further information:
http://www.uh.edu/admin/media/sciencelist.html.

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>