Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New thinking needed on atmospheric physics, study suggests


Balloon Experiments Reveal New Information About Sprites

An atmospheric phenomenon called “sprites” could be pumping 50 times more energy into the upper atmosphere than was previously thought, suggesting our understanding of the global atmosphere is incomplete, according to University of Houston space physicists.

Sprites are large, brief flashes of light that occur very high in the atmosphere above large thunderstorms. Instead of discharging toward the earth like lightning, sprites soar upward above a thunderstorm and occur immediately following strong lightning strokes.

University of Houston physics professors Edgar Bering and James Benbrook, along with their students, collected sprite data during a balloon campaign in the summer of 1999 when several balloons equipped with special detectors flew high into the atmosphere – around 20 miles up – over Texas and Iowa. The experiments were intended to study the electromagnetic signature of the lightning strokes that produce sprites, as viewed from the perspective of the sprite.

“One of the more interesting things we discovered is that every lightning stroke tries to produce a sprite in the sense that it produces a similar but weaker electrodynamic pulse in the mesosphere,” Bering says.

The layers of the atmosphere consist of the troposphere, which extends from the ground to about nine miles up; the stratosphere, beginning just above the troposphere and extending to 31 miles high; the mesosphere, extending from the stratosphere to about 53 miles high; and the thermosphere, extending beyond the mesosphere to about 372 miles.

Previous research has shown that most sprites are produced by positive cloud to ground lightning strokes, which are much rarer than negative cloud to ground lightning strokes, Bering says. Negative cloud to ground lightning strokes are initiated by a large concentration of negative charge in the cloud base, which tends to induce an area of positive charge on the ground, resulting in a discharge of electricity – lightning. A positive lightning stroke is exactly the opposite, with a positive charge concentration in the cloud inducing a negatively charged area on the ground.

Bering and his colleagues also found that negative cloud to ground strokes produce a phenomenon that is not often observed from the ground, termed a sprite halo, which is basically a sprite precursor.

“We discovered that seven to ten times as many negative cloud to ground strokes produce sprite halos as do positive cloud to ground strokes. That, coupled with the fact that every cloud to ground stroke, positive or negative, tries to produce a sprite or sprite halo, indicates that the amount of energy being deposited in the mesosphere by these sprite processes and related processes exceeds what we thought the sprites did by a factor of 50.”

Bering says that amount of energy is comparable to the amount of energy the sun pumps into that same volume of atmosphere above the thunderstorm in daylight hours.

Bering will present an invited talk on the research findings at the World Space Congress 2002, to be held Oct. 10-19 in Houston.

The closest the balloon flights got to sprite-producing thunderstorms was about 300 kilometers, or 186 miles, which limited the amount of useful data the scientists could collect, Bering says. He cautions that the experiments need to be repeated because the results depended only on observations from a few storms.

However, he says the results of the balloon flights indicate our understanding of the mesosphere is incomplete.

“It means we actually have at certain times and latitudes about a factor of two discrepancy in the energy budget of the mesosphere. From the standpoint of global understanding of the atmosphere as a whole, a factor of two in an energy budget is nontrivial,” Bering says.

While the mesosphere does not directly affect weather on earth, and the altitude is too high for precipitation-producing clouds, some researchers are attempting the use mesospheric weather as a tracker for global temperature change.

Bering says the 1999 data suggests two avenues for future studies.

“We need to get closer to the storms, which requires both more balloons and also is a matter of luck, and put additional data collection equipment on board the balloons,” he says.

The National Aeronautics and Space Administration funded the 1999 balloon flights. Bering has submitted a proposal to NASA for additional balloon studies of sprites.

In January, Bering will begin a study of phenomena other than sprites when he sends three balloons into the air over Antarctica to study the electrodynamics of the polar ionosphere.
CONTACT: Edgar Bering, 713-743-3543;

Amanda Siegfried | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>