Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use space to study how earthquakes turn solid soil into shifting sands

07.10.2002


Nothing seems more down-to-Earth than dirt, but scientists are going to space to understand how earthquakes and related strains and stresses disturb soil and sand.



When Space Shuttle Columbia lifts off in January, it will carry the Mechanics of Granular Materials (MGM) experiment, which studies soil behavior under conditions that cannot be duplicated on Earth — the microgravity, or low-gravity created as the Shuttle orbits Earth.

Results from this granular mechanics research can lead to improved foundations for buildings, management of undeveloped land, and handling of powder or granular materials used in chemical, agricultural and other industries.


“Even in North Alabama, we experienced an earthquake tremor last year,” said Buddy Guynes, the experiment’s project manager at NASA’s Marshall Space Flight Center in Huntsville, Ala. " This experiment is relevant to our lives on Earth. At NASA, we also want to know how soil behaves at different gravity levels, so one day crews can safely build habitats on Mars and the Moon."

How do earthquakes and other geological activities, like mining, impart stress to soil causing it to literally become shifting sand? As an earthquake strikes, it deforms the soil, changing the volume of the soil. If water is present, water pressure may build up in the pore space between the soil grains. What was once a solid foundation begins to flow like a liquid, a process called soil liquefaction. As the soil moves, foundations become unstable, and Earth’s gravity wins out — collapsing buildings, bridges and other structures.

Earth’s gravity also makes it difficult for scientists to study the precise physics of granular mechanics and soil liquefaction.

"On Earth, gravity-induced stresses quickly change the amount of weight, or loads, a foundation can support," said Dr. Stein Sture, the experiment’s principal investigator at the University of Colorado at Boulder. "We can use space-based research to perform detailed analyses to understand the physics that causes water- saturated, but initially firm foundation soil, to suddenly flow like water."

The strength of sand or any particulate material depends on how the granular assembly is packed together and interlocked. Moisture or air trapped within or external loads on the site help determine its weakness or softness. Cyclic loading and instabilities can cause the soil to loosen and collapse under the stress of earthquakes or other pressures.

"Computer tomography scans will produce a series of images that help us study the minute details of individual grains of sand and how they interact with each other," said Sture. "We can examine the particle arrangement and structure of soils and learn about the strength, stiffness and volume changes that occur when low pressures are applied to granular materials."

For the STS-107 experiment, three sand columns held inside latex sleeves will be used for nine experiment runs. Ottawa sand — natural quartz sand with fine grains widely used for civil engineering experiments — will be saturated with water to resemble soil on Earth. Each column holds about 1.3 kilograms (2.8 pounds) of Ottawa F-75 banding sand.

The flight crew will use a laptop computer to send commands to the experiment, causing the sand to be compressed between two tungsten metal plates. As the sand is compressed and relaxed, a load cell will measure the applied force, and three CCD cameras will record changes in shape and position of the soil inside the column. This compression and relaxation will simulate the loads that might be imparted to soil via earthquakes and other external forces.

The three columns will be used for nine tests or observations periods. Upon completion of each run, the samples will be expanded and stretched back to their original length to create a homogenous mix of sand and water at the start of each run.

When the Shuttle lands, the sand columns will be imaged using computer tomography at laboratories at NASA’s Kennedy Space Center in Florida. Then, they will be injected with epoxy, and the columns will be sawed into thin disks. These will be sent to experiment investigators in Colorado and Louisiana for inspection under an optical microscope.

"Our earlier flights showed gravity masked measurements of friction between grains of sand," said Dr. Khalid Alshibli, project scientist for the experiment and professor of civil engineering at Louisiana State University and Southern University in Baton Rouge. "This is an important factor in determining the amount of weight the soil can support."

The Mechanics of Granular Materials experiment has flown twice — on Space Shuttle missions STS-79 in 1996 and STS-89 in 1998. These investigations revealed soil specimens were two-to-three-times stronger and much stiffer than scientists had predicted. The16-day STS-107 flight aboard Columbia gives scientist an opportunity to perform longer, more complex experiments. Future experiments will benefit from extended tests aboard the International Space Station, including experiments under simulated lunar and Martian gravity in a science centrifuge.

“We anticipate valuable results from the STS-107 experiments,” said Alshibli. “We are using a novel specimen reformation technique that enables us to use the same specimen for more than one experiment run. This lays the foundation for more extensive, long-term soil research that can be carried out on the International Space Station.”

In addition to the Mechanics of Granular Materials experiment, Columbia will carry 29 more investigations sponsored by NASA’s Office of Biological and Physical Research. These peer-reviewed and commercial experiments will advance knowledge in medicine, fundamental biology, fluid physics, materials science and combustion. The STS-107 mission is a dedicated science mission recommended by the National Research Council and approved by the U.S. Congress. With more than 80 investigations, it builds on prior multidisciplinary Shuttle science missions and serves as a prelude to long-duration investigations that will be possible as science capabilities grow on the International Space Station.

Steve Roy | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>