Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suction and pull drive movement of Earth’s plates, U-M researchers show

04.10.2002


As anyone with a smattering of geological knowledge knows, Earth’s crust is made up of plates that creep over the planet’s surface at a rate of several inches per year. But why do they move the way they do? Even experts have had trouble teasing out the exact mechanisms.



A model developed by University of Michigan researchers and published in the Oct. 4 issue of Science provides a relatively simple explanation.

"It’s been known that slabs (portions of plates that extend down into the Earth) drive convection in Earth’s mantle, and ultimately the motion of the surface plates, but it hasn’t been well established exactly how that happens---the ideas have been fairly vague," says Clinton Conrad, a postdoctoral fellow in the department of geological sciences. "In this paper, we’ve been able to describe more precisely how slabs interact with the plates."


When two plates collide, one is forced down beneath the other into the mantle (the plastic-like layer between Earth’s crust and core that flows under pressure), creating what geologists call a subduction zone. Because subducting slabs are colder and denser than surrounding mantle material, they tend to sink like a lead ball in a vat of molasses.

There are two main ways these sinking slabs might influence plate motion. If a slab is attached to a plate, the slab can directly pull the plate toward the subduction zone. A slab that is not well attached to a plate, on the other hand, can’t pull directly on the plate. Instead, as it sinks, it sets up circulation patterns in the mantle that exert a sort of suction force, drawing nearby plates toward the subduction zone much as floating toys are drawn toward the outlet of a draining bathtub.

To understand the relative importance of slab pull and slab suction forces, Conrad and assistant professor of geological sciences Carolina Lithgow-Bertelloni, with whom he worked on the project, developed models in which: 1) only slab suction was operating; 2) only slab pull was operating; and 3) both slab suction and slab pull were at work. Then they compared the plate motions that would result from each of these scenarios with actual plate motions. The best fit was the model that combined slab pull and slab suction forces.

The model also explained an observation that has baffled geodynamicists for some time. "The way the observation was originally framed was that plates that have continents on them are slow, compared to plates that are only oceanic," says Lithgow-Bertelloni. But the real issue is whether or not the plates have slabs attached, she explains. Overriding plates, which have no slabs, are slower than subducting plates, which have slabs. The explanation? Subducting plates move faster because the pull effect acts directly on them, making them move rapidly toward the subduction zone. Overriding plates are also drawn toward the subduction zone---by the suction effect---but at the same time, the pull effect creates forces in the mantle that counteract that motion. The net effect is that overriding plates move more slowly toward the subduction zone than subducting plates do.

"We’ve been able to explain that the difference in speed occurs because slab pull generates mantle flow that counteracts the motion of the overriding plate," says Lithgow-Bertelloni. "We also found that this effect is only important for slabs in the upper 600 to 700 kilometers of the mantle. Any slabs deeper than 700 kilometers do not contribute to this effect. They’re important for driving flow in the mantle, but they’re not important for the pull."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.geo.lsa.umich.edu/dept/faculty/lithgowbertelloni/index.html
http://pubs.usgs.gov/publications/text/understanding.html
http://www.platetectonics.com/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>