Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research: Deep sea basalt may help reveal volcanoes’ impact on climate

04.10.2002


By examining volcanic rocks retrieved from deep in the ocean, scientists have found they can estimate the carbon dioxide stored beneath much of the earth’s surface – a development that could enhance understanding of how volcanoes affect climate. The research by University of Florida scientists and others will be reported this week in the journal Nature.



Scientists examined chunks of basalt, a type of volcanic rock formed when lava cools, from 12,000 feet below the Pacific along a massive geographical formation called the midocean ridge. The scientists discovered in these basalts traces of carbon dioxide and other compounds that originated deep within the Earth’s mantle, the source of most volcanic activity. Because compounds from this inaccessible region had never been found so well preserved, the rocks gave scientists a rare peek at what the mantle consists of – and what it might spew into the atmosphere through volcanoes.

"Most lava erupts at the surface and has lost its gases. From a geochemist’s point of view, you need to know what the composition of the mantle really is," said Mike Perfit, a UF geology professor and co-author of the Nature paper. "This kind of data might be useful in talking about the contribution of the mantle to the atmosphere and hydrosphere and how those concentrations might affect the climate."


Carbon dioxide is the leading "greenhouse gas" that traps heat and contributes to warming of the Earth. Scientists have long speculated volcanic eruptions can spew enough of this and other gases into the atmosphere to cause significant warming trends – changes so massive they may even spur mass extinctions. By giving scientists an idea of how much carbon dioxide lies under the Earth, the basalt may help answer this question, Perfit said.

When magma rises to the Earth’s surface and erupts as lava flows, Perfit said, it typically "de-gasses:" As the Earth’s pressure on the lava declines, the amount of volatile compounds that become gases at the surface rapidly decrease. It’s a bit like popping open a soft drink: The carbon dioxide bubbles off. As a result, carbon dioxide, water, sulfur dioxide, helium, chlorine and other "volatiles" are barely present in most basalt, making it difficult for geologists to figure out the amounts and proportions of these compounds in the mantle.

The deep ocean, however, is a unique environment. The water is so cold and the pressure so intense there it may keep the volatiles confined in the lava, known as magma when it first erupts and hardens. As a result, geologists have seen deep-sea geological formations such as so-called "pillow flows" as one of their best hopes for investigating the mantle question.

Perfit and colleague Dan Fornari, of the Woods Hole Oceanographic Institute, were among the scientists who dived in the manned deep-water submersible robot "Alvin" to probe a site a few hundred miles west of the Mexican coast. The area, known as the Siqueiros Transform fault, a deep part of the midocean ridge, was known to experience underwater eruptions, which is why the scientists chose it for their investigation. Perfit returned with a small load of golf ball- to basketball-sized pieces of basalt from the sea floor, where the water pressure was 350 times greater than at the surface.

This basalt not only had no bubbles, indicating that the volatile compounds remained in the lava, it also was very recently formed, making it an ideal study candidate. Scientists discovered that small crystals in the rock called olivines contained tiny bits of pure magma. Using newly developed technology that can analyze very small areas, researchers Alberto Saal and Eric Hauri, two of the other authors on the Nature paper from the Lamont-Doherty Earth Observatory of Columbia University, measured the volatiles in this magma.

Peter Michael, a professor of geosciences at The University of Tulsa familiar with the research, said other geologists have been able to measure some volatiles before, such as chlorine. But the Siqueiros Transform rocks provide a unique glimpse at carbon dioxide levels. This is important, because the midocean ridge is a mammoth, 40,000-mile long mountain where 85 percent of the world’s volcanic activity occurs. As a result, if the basalts Alvin returned to the surface are typical of other midocean ridge basalts, it could help determine the rate at which Earth’s below-ground carbon dioxide is supplied to the atmosphere through volcanoes, he said.

"What this work may allow us to do is actually compute the carbon dioxide not just for that magma, but for a lot of other midocean ridge basalt magmas," Michael said.

Writer: Aaron Hoover
ahoover@ufl.edu
Source: Mike Perfit
352-392-2128
perfit@geology.ufl.edu

Mike Perfit | EurekAlert!

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>