Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusually small antarctic ozone hole this year attributed to exceptionally strong stratospheric weather systems

01.10.2002


Scientists from NASA and the Commerce Department’s National Oceanic and Atmospheric Administration (NOAA) have confirmed the ozone hole over the Antarctic this September is not only much smaller than it was in 2000 and 2001, but has split into two separate "holes."

The researchers stressed the smaller hole is due to this year’s peculiar stratospheric weather patterns and that a single year’s unusual pattern does not make a long-term trend. Moreover, they said, the data are not conclusive that the ozone layer is recovering.

Paul Newman, a lead ozone researcher at NASA’s Goddard Space Flight Center, Greenbelt, Md., said this year, warmer-than-normal temperatures around the edge of the polar vortex that forms annually in the stratosphere over Antarctica are responsible for the smaller ozone loss.



Estimates for the last two weeks of the size of the Antarctic Ozone Hole (the region with total column ozone below 220 Dobson Units), from the NASA Earth Probe Total Ozone Mapping Spectrometer (EPTOMS) and the NOAA-16 Solar Backscatter Ultraviolet instrument (SBUV/2), are around 15 million square kilometers (6 million square miles). These values are well below the more-than 24 million sq. km. (9 million sq. mi.) seen the last six years for the same time of year.

The stratosphere is a portion of the atmosphere about 6-to-30 miles above the Earth’s surface where the ozone layer is found. The ozone layer prevents the sun’s harmful ultraviolet radiation from reaching the Earth’s surface. Ultraviolet radiation is a primary cause of skin cancer. Without protective upper-level ozone, there would be no life on Earth.

"The Southern Hemisphere’s stratosphere was unusually disturbed this year," said Craig Long, meteorologist at NOAA’s Climate Prediction Center (CPC). The unusual weather patterns were so strong, the ozone hole split into two pieces during late September. NOAA’s CPC has been monitoring and studying the ozone since the early 1970s. "This is the first time we’ve seen the polar vortex split in September," said Long.

At South Pole Station, balloon-borne ozone-measuring instruments launched by NOAA’s Climate Monitoring and Diagnostics Laboratory (CMDL) reveal the vertical structure of the developing ozone hole. Bryan Johnson, a scientist with CMDL, said the main ozone depletion region, from 7-to-14 miles above the Earth, has large ozone losses, similar to the last few years. At more than 15 miles above the Earth, surface measurements show higher-than-normal ozone concentrations and higher temperatures.

The combination of these layers indicate total ozone levels in a column of atmosphere will be higher than observed during the last few years, Johnson said. However, some layers may still show complete ozone destruction by early October, when ozone depletion is greatest.

In 2001, the Antarctic ozone hole was larger than the combined area of the United States, Canada and Mexico. The last time the ozone hole was this small was in 1988, and that was also due to warm atmospheric temperatures.

"While chlorine and bromine chemicals cause the ozone hole, temperature is also a key factor in ozone loss," Newman said. The Montreal Protocol and its amendments banned chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons in 1995, because of their destructive effect on the ozone layer. However, CFCs and halons are extremely long-lived and still linger at high concentrations in the atmosphere.

The coldest temperatures over the South Pole typically occur in August and September. Thin clouds form in these cold conditions, and chemical reactions on the cloud particles help chlorine and bromine gases to rapidly destroy ozone. By early October, temperatures usually begin to warm, and thereafter the ozone layer starts to recover.

NOAA and NASA continuously observe Antarctic ozone with a combination of ground, balloon, and satellite-based instruments.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/gsfc/earth/pictures/20020926ozonehole/2002ozonehole.mov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>