Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate model for Earth also describes changes on Mars

26.09.2002


Orbit affects climate on Mars similar to the way it affects climate on Earth, say three scientists, who used a model of climate change on Earth to explain the layers of deposits in the polar regions of the Red Planet.


An image from the Hubble Space Telescope shows the full disk of Mars. Clouds and weather can be seen at the poles. [Image: NASA, Hubble Heritage Team (STScl/AURA) Hubble Space Telescope WFPC2 STScl-PRC01-24].


This image, from an exposure of layers in the North Pole of Mars, is the actual image used in the analysis. Mustard and his colleagues say the alternating bright and dark bands are due to changes in climate recorded in these layers. The image is of an area about a mile across. [Image: NASA/JPL/Malin Space Science Systems].



Their study appears in the Sept. 26 issue of Nature, and suggests that a climate change theory for Earth can also be applied to Mars and possibly to other Earth-like planets.

“The orbital theory of climate change has been successful in explaining changes in the Earth’s climate, and we have used cores of the Greenland and Antarctic ice caps to reconstruct past climates and atmospheres on Earth,” said author Jack Mustard, associate professor of geological sciences at Brown University. “This means that we can now use the Mars caps in a similar way.”


The study also produced “a much better constraint on the time required to form the layers on the polar cap of Mars,” he said. “This has importance in understanding the Martian climate, and also the water cycles and history. We have so little information on the rates of change on Mars, but this gives us a solid marker.”

Besides Mustard, the other two authors of the study are Jacques Laskar and Benjamin Levrard of the Astronomie et Systèmes Dynamiques in Paris.

The trio used orbital calculations and rotational parameters of Mars, new high-resolution images of its north pole terrain, and high-resolution topography data to correlate exposed layers of ice and dust with changes in climate, particularly the sum of solar radiation reaching the terrain. Their techniques mirrored those used for orbital-based climate studies on Earth.

Changes in the ratio of dust and ice over time are visible in the variations of brightness seen in the layers of polar deposits on Mars. First noticed in the earliest Mars missions, the layers were thought to be related to changes in climate possibly linked with the evolution of Mars’ orbit such as the tilt of the axis and deviations in circularity. But the image resolution of past data was insufficient to resolve such key details.

High-resolution images from the Mars Global Surveyor allowed Mustard to resolve the fine detail and analyze the patterns. “After correcting the observations for topography, we produced a measure of the brightness of the layers as a function of depth,” he said. “We assume that depth equals time and thus can peer into the past. We then compared this record with the predicted amount of sunlight received at the pole over the last 10 million years, which varies with orbital evolution involving tilt and circularity.”

The researchers’ goal was to determine whether the sunlight record at the north polar cap of Mars correlated with the brightness-depth profile, and over what time frame. If the record correlated, that would solidify their hypothesis that the layers are due to climate changes related to orbit and allow the researchers to determine the formation rate of the layers.

“Indeed we find an excellent correlation and show that the 350-meter thick package of layers formed within the last 1 million years or so,” Mustard said. For the most recent 250-meter thick deposit of the north ice polar cap, the researchers found an average deposition rate of 0.05 cm/yr. “For the first time, we showed that the orbital theory of climate change has a record in the polar deposits on Mars.”

In orbit, Earth tilts about 23-25 degrees. In contrast, Mars tilts as little as 15 degrees and as much as 40 degrees, which is enough to redistribute moisture from polar caps to equatorial regions, Mustard said. In the 1970s, research by geologists at Brown first showed an orbital effect on climate change for Earth.

“This study further ties Mars and Earth as similar planets and strengthens the foundations to compare their climates and orbital evolutions,” Mustard said. “Showing that a planet with as strange an orbit as Mars has climate changes recorded in its surface means we have a tool in this orbital driver to explore what happens on the surface of planets with differences and similarities to Earth. And as we learn more about deposits on Mars we can compare what we find with what we know about Earth.”

The Centre Nationale de la Recherche Scientifique Programme Nationale de Planétologie and NASA’s Solar System Exploration programs supported the research.

Scott Turner | EurekAlert!
Further information:
http://www.brown.edu/Administration/News_Bureau

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>