Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate model for Earth also describes changes on Mars

26.09.2002


Orbit affects climate on Mars similar to the way it affects climate on Earth, say three scientists, who used a model of climate change on Earth to explain the layers of deposits in the polar regions of the Red Planet.


An image from the Hubble Space Telescope shows the full disk of Mars. Clouds and weather can be seen at the poles. [Image: NASA, Hubble Heritage Team (STScl/AURA) Hubble Space Telescope WFPC2 STScl-PRC01-24].


This image, from an exposure of layers in the North Pole of Mars, is the actual image used in the analysis. Mustard and his colleagues say the alternating bright and dark bands are due to changes in climate recorded in these layers. The image is of an area about a mile across. [Image: NASA/JPL/Malin Space Science Systems].



Their study appears in the Sept. 26 issue of Nature, and suggests that a climate change theory for Earth can also be applied to Mars and possibly to other Earth-like planets.

“The orbital theory of climate change has been successful in explaining changes in the Earth’s climate, and we have used cores of the Greenland and Antarctic ice caps to reconstruct past climates and atmospheres on Earth,” said author Jack Mustard, associate professor of geological sciences at Brown University. “This means that we can now use the Mars caps in a similar way.”


The study also produced “a much better constraint on the time required to form the layers on the polar cap of Mars,” he said. “This has importance in understanding the Martian climate, and also the water cycles and history. We have so little information on the rates of change on Mars, but this gives us a solid marker.”

Besides Mustard, the other two authors of the study are Jacques Laskar and Benjamin Levrard of the Astronomie et Systèmes Dynamiques in Paris.

The trio used orbital calculations and rotational parameters of Mars, new high-resolution images of its north pole terrain, and high-resolution topography data to correlate exposed layers of ice and dust with changes in climate, particularly the sum of solar radiation reaching the terrain. Their techniques mirrored those used for orbital-based climate studies on Earth.

Changes in the ratio of dust and ice over time are visible in the variations of brightness seen in the layers of polar deposits on Mars. First noticed in the earliest Mars missions, the layers were thought to be related to changes in climate possibly linked with the evolution of Mars’ orbit such as the tilt of the axis and deviations in circularity. But the image resolution of past data was insufficient to resolve such key details.

High-resolution images from the Mars Global Surveyor allowed Mustard to resolve the fine detail and analyze the patterns. “After correcting the observations for topography, we produced a measure of the brightness of the layers as a function of depth,” he said. “We assume that depth equals time and thus can peer into the past. We then compared this record with the predicted amount of sunlight received at the pole over the last 10 million years, which varies with orbital evolution involving tilt and circularity.”

The researchers’ goal was to determine whether the sunlight record at the north polar cap of Mars correlated with the brightness-depth profile, and over what time frame. If the record correlated, that would solidify their hypothesis that the layers are due to climate changes related to orbit and allow the researchers to determine the formation rate of the layers.

“Indeed we find an excellent correlation and show that the 350-meter thick package of layers formed within the last 1 million years or so,” Mustard said. For the most recent 250-meter thick deposit of the north ice polar cap, the researchers found an average deposition rate of 0.05 cm/yr. “For the first time, we showed that the orbital theory of climate change has a record in the polar deposits on Mars.”

In orbit, Earth tilts about 23-25 degrees. In contrast, Mars tilts as little as 15 degrees and as much as 40 degrees, which is enough to redistribute moisture from polar caps to equatorial regions, Mustard said. In the 1970s, research by geologists at Brown first showed an orbital effect on climate change for Earth.

“This study further ties Mars and Earth as similar planets and strengthens the foundations to compare their climates and orbital evolutions,” Mustard said. “Showing that a planet with as strange an orbit as Mars has climate changes recorded in its surface means we have a tool in this orbital driver to explore what happens on the surface of planets with differences and similarities to Earth. And as we learn more about deposits on Mars we can compare what we find with what we know about Earth.”

The Centre Nationale de la Recherche Scientifique Programme Nationale de Planétologie and NASA’s Solar System Exploration programs supported the research.

Scott Turner | EurekAlert!
Further information:
http://www.brown.edu/Administration/News_Bureau

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>