Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate model for Earth also describes changes on Mars

26.09.2002


Orbit affects climate on Mars similar to the way it affects climate on Earth, say three scientists, who used a model of climate change on Earth to explain the layers of deposits in the polar regions of the Red Planet.


An image from the Hubble Space Telescope shows the full disk of Mars. Clouds and weather can be seen at the poles. [Image: NASA, Hubble Heritage Team (STScl/AURA) Hubble Space Telescope WFPC2 STScl-PRC01-24].


This image, from an exposure of layers in the North Pole of Mars, is the actual image used in the analysis. Mustard and his colleagues say the alternating bright and dark bands are due to changes in climate recorded in these layers. The image is of an area about a mile across. [Image: NASA/JPL/Malin Space Science Systems].



Their study appears in the Sept. 26 issue of Nature, and suggests that a climate change theory for Earth can also be applied to Mars and possibly to other Earth-like planets.

“The orbital theory of climate change has been successful in explaining changes in the Earth’s climate, and we have used cores of the Greenland and Antarctic ice caps to reconstruct past climates and atmospheres on Earth,” said author Jack Mustard, associate professor of geological sciences at Brown University. “This means that we can now use the Mars caps in a similar way.”


The study also produced “a much better constraint on the time required to form the layers on the polar cap of Mars,” he said. “This has importance in understanding the Martian climate, and also the water cycles and history. We have so little information on the rates of change on Mars, but this gives us a solid marker.”

Besides Mustard, the other two authors of the study are Jacques Laskar and Benjamin Levrard of the Astronomie et Systèmes Dynamiques in Paris.

The trio used orbital calculations and rotational parameters of Mars, new high-resolution images of its north pole terrain, and high-resolution topography data to correlate exposed layers of ice and dust with changes in climate, particularly the sum of solar radiation reaching the terrain. Their techniques mirrored those used for orbital-based climate studies on Earth.

Changes in the ratio of dust and ice over time are visible in the variations of brightness seen in the layers of polar deposits on Mars. First noticed in the earliest Mars missions, the layers were thought to be related to changes in climate possibly linked with the evolution of Mars’ orbit such as the tilt of the axis and deviations in circularity. But the image resolution of past data was insufficient to resolve such key details.

High-resolution images from the Mars Global Surveyor allowed Mustard to resolve the fine detail and analyze the patterns. “After correcting the observations for topography, we produced a measure of the brightness of the layers as a function of depth,” he said. “We assume that depth equals time and thus can peer into the past. We then compared this record with the predicted amount of sunlight received at the pole over the last 10 million years, which varies with orbital evolution involving tilt and circularity.”

The researchers’ goal was to determine whether the sunlight record at the north polar cap of Mars correlated with the brightness-depth profile, and over what time frame. If the record correlated, that would solidify their hypothesis that the layers are due to climate changes related to orbit and allow the researchers to determine the formation rate of the layers.

“Indeed we find an excellent correlation and show that the 350-meter thick package of layers formed within the last 1 million years or so,” Mustard said. For the most recent 250-meter thick deposit of the north ice polar cap, the researchers found an average deposition rate of 0.05 cm/yr. “For the first time, we showed that the orbital theory of climate change has a record in the polar deposits on Mars.”

In orbit, Earth tilts about 23-25 degrees. In contrast, Mars tilts as little as 15 degrees and as much as 40 degrees, which is enough to redistribute moisture from polar caps to equatorial regions, Mustard said. In the 1970s, research by geologists at Brown first showed an orbital effect on climate change for Earth.

“This study further ties Mars and Earth as similar planets and strengthens the foundations to compare their climates and orbital evolutions,” Mustard said. “Showing that a planet with as strange an orbit as Mars has climate changes recorded in its surface means we have a tool in this orbital driver to explore what happens on the surface of planets with differences and similarities to Earth. And as we learn more about deposits on Mars we can compare what we find with what we know about Earth.”

The Centre Nationale de la Recherche Scientifique Programme Nationale de Planétologie and NASA’s Solar System Exploration programs supported the research.

Scott Turner | EurekAlert!
Further information:
http://www.brown.edu/Administration/News_Bureau

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>