Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographer studies the effects of inland water on the intensity of landfalling hurricanes

26.09.2002


One of the known facts about landfalling hurricanes is their rapid decay, yet some of them retain tropical storm winds and gusts well inland. While studies have shown that the reduction in surface evaporation is a reason for hurricane decay during landfall, little is known about the effect of land surface water on the intensity of hurricanes.



In a recent issue of the Journal of Atmospheric Sciences, URI Graduate School of Oceanography (GSO) physical oceanographer Isaac Ginis, Weixing Shen, formerly with GSO and now at NOAA’s National Center for Environmental Prediction, and Robert E. Tuleya of NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, studied the effect of land surface water on hurricane intensity. The team found that under some conditions, the presence of less than two feet of water could noticeably reduce landfall decay.

Previous studies of land-falling hurricanes used fixed underlying surface conditions. The current study, using the GFDL hurricane model, investigated the effects of land surface water on land-falling hurricanes, including surface temperature changes and their influence on changes in surface heat, hurricane structure, and intensity. The team of scientists used a range of water depths and surface roughness conditions to correspond to a possible array of surface conditions.


Funded by the National Science Foundation, the study showed that during hurricane landfall over a water-covered land, large local surface cooling occurs near the hurricane core region. This surface cooling causes a reduction in evaporation, the primary energy source for hurricanes, thus considerably reducing hurricane intensity during landfall. The reduction depends on the presence and depth of surface water. With a two-foot layer of surface water, the hurricane will maintain its intensity, but collapse over dry land.

An increase in surface roughness significantly reduces the surface winds but only yields a small increase in the central pressure because while surface roughness increases surface drag, it also increases surface evaporation which fuels a hurricane’s intensity.

When a hurricane travels over land, the amount of surface evaporation is considerably less than when it travels over water. However, the scientists found that this condition does not produce any large changes in the size of the eye of the storm, even when hurricane intensity is significantly reduced.

Ginis, along with GSO physical oceanographer Lewis Rothstein, developed a computer model to predict the intensity of hurricanes. The GSO model was coupled with a hurricane model created by National Oceanographic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamic Laboratory (GFDL) to provide a more efficient set of predictors that take into consideration the effects of atmosphere-ocean interaction during storms and more accurate predictions of storm intensity. In 2000, the coupled model became an official component of the national hurricane prediction system used to forecast Atlantic and Gulf of Mexico tropical storms and hurricanes.

The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeolocial Oceanography, and the National Sea Grant Library.


Media Contact: Lisa Cugini, (401) 874-6642, lcugini@gso.uri.edu
Isaac Ginis, (401) 874-6484, iginis@gso.uri.edu

Lisa Cugini | EurekAlert!

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>