Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographer studies the effects of inland water on the intensity of landfalling hurricanes

26.09.2002


One of the known facts about landfalling hurricanes is their rapid decay, yet some of them retain tropical storm winds and gusts well inland. While studies have shown that the reduction in surface evaporation is a reason for hurricane decay during landfall, little is known about the effect of land surface water on the intensity of hurricanes.



In a recent issue of the Journal of Atmospheric Sciences, URI Graduate School of Oceanography (GSO) physical oceanographer Isaac Ginis, Weixing Shen, formerly with GSO and now at NOAA’s National Center for Environmental Prediction, and Robert E. Tuleya of NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, studied the effect of land surface water on hurricane intensity. The team found that under some conditions, the presence of less than two feet of water could noticeably reduce landfall decay.

Previous studies of land-falling hurricanes used fixed underlying surface conditions. The current study, using the GFDL hurricane model, investigated the effects of land surface water on land-falling hurricanes, including surface temperature changes and their influence on changes in surface heat, hurricane structure, and intensity. The team of scientists used a range of water depths and surface roughness conditions to correspond to a possible array of surface conditions.


Funded by the National Science Foundation, the study showed that during hurricane landfall over a water-covered land, large local surface cooling occurs near the hurricane core region. This surface cooling causes a reduction in evaporation, the primary energy source for hurricanes, thus considerably reducing hurricane intensity during landfall. The reduction depends on the presence and depth of surface water. With a two-foot layer of surface water, the hurricane will maintain its intensity, but collapse over dry land.

An increase in surface roughness significantly reduces the surface winds but only yields a small increase in the central pressure because while surface roughness increases surface drag, it also increases surface evaporation which fuels a hurricane’s intensity.

When a hurricane travels over land, the amount of surface evaporation is considerably less than when it travels over water. However, the scientists found that this condition does not produce any large changes in the size of the eye of the storm, even when hurricane intensity is significantly reduced.

Ginis, along with GSO physical oceanographer Lewis Rothstein, developed a computer model to predict the intensity of hurricanes. The GSO model was coupled with a hurricane model created by National Oceanographic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamic Laboratory (GFDL) to provide a more efficient set of predictors that take into consideration the effects of atmosphere-ocean interaction during storms and more accurate predictions of storm intensity. In 2000, the coupled model became an official component of the national hurricane prediction system used to forecast Atlantic and Gulf of Mexico tropical storms and hurricanes.

The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeolocial Oceanography, and the National Sea Grant Library.


Media Contact: Lisa Cugini, (401) 874-6642, lcugini@gso.uri.edu
Isaac Ginis, (401) 874-6484, iginis@gso.uri.edu

Lisa Cugini | EurekAlert!

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>