Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographer studies the effects of inland water on the intensity of landfalling hurricanes

26.09.2002


One of the known facts about landfalling hurricanes is their rapid decay, yet some of them retain tropical storm winds and gusts well inland. While studies have shown that the reduction in surface evaporation is a reason for hurricane decay during landfall, little is known about the effect of land surface water on the intensity of hurricanes.



In a recent issue of the Journal of Atmospheric Sciences, URI Graduate School of Oceanography (GSO) physical oceanographer Isaac Ginis, Weixing Shen, formerly with GSO and now at NOAA’s National Center for Environmental Prediction, and Robert E. Tuleya of NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, studied the effect of land surface water on hurricane intensity. The team found that under some conditions, the presence of less than two feet of water could noticeably reduce landfall decay.

Previous studies of land-falling hurricanes used fixed underlying surface conditions. The current study, using the GFDL hurricane model, investigated the effects of land surface water on land-falling hurricanes, including surface temperature changes and their influence on changes in surface heat, hurricane structure, and intensity. The team of scientists used a range of water depths and surface roughness conditions to correspond to a possible array of surface conditions.


Funded by the National Science Foundation, the study showed that during hurricane landfall over a water-covered land, large local surface cooling occurs near the hurricane core region. This surface cooling causes a reduction in evaporation, the primary energy source for hurricanes, thus considerably reducing hurricane intensity during landfall. The reduction depends on the presence and depth of surface water. With a two-foot layer of surface water, the hurricane will maintain its intensity, but collapse over dry land.

An increase in surface roughness significantly reduces the surface winds but only yields a small increase in the central pressure because while surface roughness increases surface drag, it also increases surface evaporation which fuels a hurricane’s intensity.

When a hurricane travels over land, the amount of surface evaporation is considerably less than when it travels over water. However, the scientists found that this condition does not produce any large changes in the size of the eye of the storm, even when hurricane intensity is significantly reduced.

Ginis, along with GSO physical oceanographer Lewis Rothstein, developed a computer model to predict the intensity of hurricanes. The GSO model was coupled with a hurricane model created by National Oceanographic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamic Laboratory (GFDL) to provide a more efficient set of predictors that take into consideration the effects of atmosphere-ocean interaction during storms and more accurate predictions of storm intensity. In 2000, the coupled model became an official component of the national hurricane prediction system used to forecast Atlantic and Gulf of Mexico tropical storms and hurricanes.

The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeolocial Oceanography, and the National Sea Grant Library.


Media Contact: Lisa Cugini, (401) 874-6642, lcugini@gso.uri.edu
Isaac Ginis, (401) 874-6484, iginis@gso.uri.edu

Lisa Cugini | EurekAlert!

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>