Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI oceanographer studies the effects of inland water on the intensity of landfalling hurricanes

26.09.2002


One of the known facts about landfalling hurricanes is their rapid decay, yet some of them retain tropical storm winds and gusts well inland. While studies have shown that the reduction in surface evaporation is a reason for hurricane decay during landfall, little is known about the effect of land surface water on the intensity of hurricanes.



In a recent issue of the Journal of Atmospheric Sciences, URI Graduate School of Oceanography (GSO) physical oceanographer Isaac Ginis, Weixing Shen, formerly with GSO and now at NOAA’s National Center for Environmental Prediction, and Robert E. Tuleya of NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, studied the effect of land surface water on hurricane intensity. The team found that under some conditions, the presence of less than two feet of water could noticeably reduce landfall decay.

Previous studies of land-falling hurricanes used fixed underlying surface conditions. The current study, using the GFDL hurricane model, investigated the effects of land surface water on land-falling hurricanes, including surface temperature changes and their influence on changes in surface heat, hurricane structure, and intensity. The team of scientists used a range of water depths and surface roughness conditions to correspond to a possible array of surface conditions.


Funded by the National Science Foundation, the study showed that during hurricane landfall over a water-covered land, large local surface cooling occurs near the hurricane core region. This surface cooling causes a reduction in evaporation, the primary energy source for hurricanes, thus considerably reducing hurricane intensity during landfall. The reduction depends on the presence and depth of surface water. With a two-foot layer of surface water, the hurricane will maintain its intensity, but collapse over dry land.

An increase in surface roughness significantly reduces the surface winds but only yields a small increase in the central pressure because while surface roughness increases surface drag, it also increases surface evaporation which fuels a hurricane’s intensity.

When a hurricane travels over land, the amount of surface evaporation is considerably less than when it travels over water. However, the scientists found that this condition does not produce any large changes in the size of the eye of the storm, even when hurricane intensity is significantly reduced.

Ginis, along with GSO physical oceanographer Lewis Rothstein, developed a computer model to predict the intensity of hurricanes. The GSO model was coupled with a hurricane model created by National Oceanographic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamic Laboratory (GFDL) to provide a more efficient set of predictors that take into consideration the effects of atmosphere-ocean interaction during storms and more accurate predictions of storm intensity. In 2000, the coupled model became an official component of the national hurricane prediction system used to forecast Atlantic and Gulf of Mexico tropical storms and hurricanes.

The URI Graduate School of Oceanography is one of the country’s largest marine science education programs, and one of the world’s foremost marine research institutions. Founded in 1961 in Narragansett, RI, GSO serves a community of scientists who are researching the causes of and solutions to such problems as acid rain, harmful algal blooms, global warming, air and water pollution, oil spills, overfishing, and coastal erosion. GSO is home to the Coastal Institute, the Coastal Resources Center, Rhode Island Sea Grant, the Institute for Archaeolocial Oceanography, and the National Sea Grant Library.


Media Contact: Lisa Cugini, (401) 874-6642, lcugini@gso.uri.edu
Isaac Ginis, (401) 874-6484, iginis@gso.uri.edu

Lisa Cugini | EurekAlert!

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>