Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic forecast: premature break-up of ozone hole this week

24.09.2002


Based on satellite data from the European Space Agency, the national meteorological centre of the Netherlands predicts the Antarctic ozone hole will break apart this week, months earlier than usual.



A scientist at the Royal Netherlands Meteorological Institute (KNMI) adds that the depth of the ozone hole is much smaller than previously seen.

"This breakdown is occurring exceptionally early in the year, about two months earlier than normal", says Henk Eskes, a KNMI senior scientist. "The depth of the ozone hole this year also is unusually small, about half that recorded in 2001".


The KNMI researcher predicted the Antarctic ozone hole will separate into two parts by Wednesday, 25 September, and will weaken even further afterwards. Despite the optimistic forecast, he warned the possibility that one of the two remnants will strengthen and form a new ozone hole “cannot be excluded.”

Globally, there has been a slow decrease in the amount of ozone-depleting substances in the atmosphere, Eskes said, due to international treaties to reduce their production. But, he added, “this decrease is too slow to explain this year’s weak ozone hole.”

The explanation lies instead with the natural year-to-year variability of atmospheric circulation that influences the size and duration of the ozone hole, according to the Dutch scientist. The ozone hole is surrounded by a vortex of strong winds that block the exchange of air between polar and mid-latitude regions. During the South Pole’s spring and summer, the temperature increases and the winds weaken. As a result, ozone-poor air inside the vortex mixes with the ozone-richer air outside, and the ozone hole dissipates.

“Normally this happens in November-December, but this year we predict it will happen this week,” Eskes said.

Since the early 1980s, the Antarctic ozone hole has developed every year starting in August or September. More than half of the area’s natural ozone is depleted eventually, caused by such ozone-depleting substances as chlorofluorocarbons, or CFCs, which had been used as refrigerants, solvents and foam-blowing agents.

The strong ozone depletion occurs only at very low temperatures under the influence of solar radiation. As a result, the ozone hole only appears over the cold region of Antarctica, when the sun returns after the polar winter.

Depletion of the ozone layer also occurs outside the ozone hole at mid-latitudes. In these areas, however, the depletion occurs by slower processes and is less strong than over Antarctica.

KNMI, the Dutch national research and information centre for climate, climatic change and seismology, uses data from ESA’s Global Ozone Monitoring Experiment (GOME) instrument onboard the ERS-2 satellite to generate daily global ozone analyses and nine-day ozone forecasts.

The centre’s GOME Fast Delivery Service performs near real time processing of the satellite data. GOME ozone observations are assimilated into a tracer transport model, driven by meteorological fields from the numerical weather prediction model generated by the European Centre for Medium-Range Weather Forecasts, a UK-based international organisation for advance weather forecasts.

The GOME Fast Delivery Service was developed under ESA’s Data User Programme, an effort dedicated to developing and demonstrating applications services in support of institutional and private user communities.

The GOME instrument is a nadir-scanning ultraviolet and visible spectrometer to monitor atmospheric ozone levels. Since 1996, ESA has been delivering to KNMI and other users three-day GOME global observations of total ozone, nitrogen dioxide and related cloud data via CD-ROM and the Internet.

Launched earlier this year, ESA’s Envisat satellite carries several instruments to assist climate researchers in monitoring ozone levels and other atmospheric conditions. Enivsat’s suite of ten sensors include: the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instrument to measure trace gases and aerosol concentrations in the atmosphere; the global ozone monitoring by occultation of stars (GOMOS) sensor to observe the concentration of ozone in the stratosphere; and the Michelson interferometer for passive atmospheric sounding (MIPAS) to collect information about chemical and physical processes in the stratosphere, such as those that will affect future ozone concentrations.

ESA, together with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), also is preparing a series of three satellites called MetOp that will carry follow-on GOME instruments and guarantee at least ten years of continued ozone monitoring from space starting in 2005.

Claus Zehner | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>