Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic forecast: premature break-up of ozone hole this week

24.09.2002


Based on satellite data from the European Space Agency, the national meteorological centre of the Netherlands predicts the Antarctic ozone hole will break apart this week, months earlier than usual.



A scientist at the Royal Netherlands Meteorological Institute (KNMI) adds that the depth of the ozone hole is much smaller than previously seen.

"This breakdown is occurring exceptionally early in the year, about two months earlier than normal", says Henk Eskes, a KNMI senior scientist. "The depth of the ozone hole this year also is unusually small, about half that recorded in 2001".


The KNMI researcher predicted the Antarctic ozone hole will separate into two parts by Wednesday, 25 September, and will weaken even further afterwards. Despite the optimistic forecast, he warned the possibility that one of the two remnants will strengthen and form a new ozone hole “cannot be excluded.”

Globally, there has been a slow decrease in the amount of ozone-depleting substances in the atmosphere, Eskes said, due to international treaties to reduce their production. But, he added, “this decrease is too slow to explain this year’s weak ozone hole.”

The explanation lies instead with the natural year-to-year variability of atmospheric circulation that influences the size and duration of the ozone hole, according to the Dutch scientist. The ozone hole is surrounded by a vortex of strong winds that block the exchange of air between polar and mid-latitude regions. During the South Pole’s spring and summer, the temperature increases and the winds weaken. As a result, ozone-poor air inside the vortex mixes with the ozone-richer air outside, and the ozone hole dissipates.

“Normally this happens in November-December, but this year we predict it will happen this week,” Eskes said.

Since the early 1980s, the Antarctic ozone hole has developed every year starting in August or September. More than half of the area’s natural ozone is depleted eventually, caused by such ozone-depleting substances as chlorofluorocarbons, or CFCs, which had been used as refrigerants, solvents and foam-blowing agents.

The strong ozone depletion occurs only at very low temperatures under the influence of solar radiation. As a result, the ozone hole only appears over the cold region of Antarctica, when the sun returns after the polar winter.

Depletion of the ozone layer also occurs outside the ozone hole at mid-latitudes. In these areas, however, the depletion occurs by slower processes and is less strong than over Antarctica.

KNMI, the Dutch national research and information centre for climate, climatic change and seismology, uses data from ESA’s Global Ozone Monitoring Experiment (GOME) instrument onboard the ERS-2 satellite to generate daily global ozone analyses and nine-day ozone forecasts.

The centre’s GOME Fast Delivery Service performs near real time processing of the satellite data. GOME ozone observations are assimilated into a tracer transport model, driven by meteorological fields from the numerical weather prediction model generated by the European Centre for Medium-Range Weather Forecasts, a UK-based international organisation for advance weather forecasts.

The GOME Fast Delivery Service was developed under ESA’s Data User Programme, an effort dedicated to developing and demonstrating applications services in support of institutional and private user communities.

The GOME instrument is a nadir-scanning ultraviolet and visible spectrometer to monitor atmospheric ozone levels. Since 1996, ESA has been delivering to KNMI and other users three-day GOME global observations of total ozone, nitrogen dioxide and related cloud data via CD-ROM and the Internet.

Launched earlier this year, ESA’s Envisat satellite carries several instruments to assist climate researchers in monitoring ozone levels and other atmospheric conditions. Enivsat’s suite of ten sensors include: the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instrument to measure trace gases and aerosol concentrations in the atmosphere; the global ozone monitoring by occultation of stars (GOMOS) sensor to observe the concentration of ozone in the stratosphere; and the Michelson interferometer for passive atmospheric sounding (MIPAS) to collect information about chemical and physical processes in the stratosphere, such as those that will affect future ozone concentrations.

ESA, together with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), also is preparing a series of three satellites called MetOp that will carry follow-on GOME instruments and guarantee at least ten years of continued ozone monitoring from space starting in 2005.

Claus Zehner | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>