Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA satellite imagery credited with breakthrough in earthquake research

19.09.2002


California scientists credit synthetic aperture radar imagery from the European Space Agency with making possible new ways to depict earthquake fault zones and uncovering unusual earthquake-related deformations. Their study of imagery from a 1999 earthquake in the western US could provide a new way to identify active faults and help track when the last earthquake occurred on a fault zone.



Writing in last week’s issue of Science magazine, researchers from the Scripps Institution of Oceanography at the University of California in San Diego, and the California Institute of Technology detailed their studies of the so-called “Hector Mine” earthquake, a magnitude 7.1 earthquake that tore through 28 miles of faults in the Mojave Desert. Named after a nearby abandoned mine in the remote area, the earthquake caused virtually no damage. It was, however, the “perfect” event to use satellite and radar technologies to document unique characteristics of faults, said Scripps’ Yuri Fialko, the study’s lead author.
The earthquake was comprehensively imaged with interferometric synthetic aperture radar (InSAR), which uses a series of satellite recordings to detect changes in the Earth’s surface. The most surprising finding that came out of the analysis of the imagery was the first evidence that faults can move backwards.
“Even small stress perturbations from distant earthquakes can cause faults to move a little bit, but it’s only been known to cause this motion in a forward sense,” Fialko said in a Scripps announcement of the study’s publication in Science. “Here we observed the faults coming backwards, due to relatively small stress changes, which is really quite unusual.”


The article argues that the backward motion on the faults is caused by the dissimilar nature of material within the faults, rather than frictional failure. The results, Failko said, will guide new seismic studies to areas with contrasting fault materials and can then be used to identify potentially active faults.

Co-author Peter Shearer of Scripps credited the study’s detailed results to the “breakthrough” offered by InSAR technology.

“Prior to InSAR, all we had were spot measurements of the deformation field,” the Scripps scientist said. “With InSAR we have millions of points and thus a continuous picture of the deformation across southern California.”

Using the satellite data, the study was able to document both vertical and horizontal terrain displacements of several millimetres to several centimetres across kilometre-wide zones centred on faults.

“The findings became possible due to highly successful satellite missions of the European Space Agency,” the scientists were cited as saying by the Scripps announcement.

In the Science article, the authors pointed out that the earthquake area had been imaged repeatedly by ESA’s ERS-1 and ERS-2 satellites over the past 10 years. The research team generated and analysed all possible interferometric pairs that included the earthquake date, ending up with 15 interferograms from a descending orbit, and five interferograms from an ascending orbit.

The first synthetic aperture radar was launched in 1991 as one of three main instruments on ESA’s ERS-1 satellite. It was followed by a second on ERS-2 in 1995. These highly successful ESA satellites have collected a wealth of valuable data on the Earth’s land surfaces, oceans, and polar caps. Today, several hundred research groups worldwide use ERS data to further their studies. With ERS data, the InSAR technique represents a major breakthrough in Earth sciences, allowing scientists to understand better earthquakes and other natural events.

Europe’s latest environmental satellite, Envisat, was launched earlier this year carrying an advanced SAR (ASAR). Envisat’s ASAR instrument is the first permanent spaceborne radar to incorporate dual-polarisation capabilities - the instrument can transmit and receive signals in either horizontal or vertical polarisation. This dramatically improves the capability of SAR to discriminate between different types of terrain compared with the sensors on the earlier ERS generation of satellites, while offering a continuity of service to users working with the InSAR technique.

Henri Laur | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>