Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA satellite imagery credited with breakthrough in earthquake research

19.09.2002


California scientists credit synthetic aperture radar imagery from the European Space Agency with making possible new ways to depict earthquake fault zones and uncovering unusual earthquake-related deformations. Their study of imagery from a 1999 earthquake in the western US could provide a new way to identify active faults and help track when the last earthquake occurred on a fault zone.



Writing in last week’s issue of Science magazine, researchers from the Scripps Institution of Oceanography at the University of California in San Diego, and the California Institute of Technology detailed their studies of the so-called “Hector Mine” earthquake, a magnitude 7.1 earthquake that tore through 28 miles of faults in the Mojave Desert. Named after a nearby abandoned mine in the remote area, the earthquake caused virtually no damage. It was, however, the “perfect” event to use satellite and radar technologies to document unique characteristics of faults, said Scripps’ Yuri Fialko, the study’s lead author.
The earthquake was comprehensively imaged with interferometric synthetic aperture radar (InSAR), which uses a series of satellite recordings to detect changes in the Earth’s surface. The most surprising finding that came out of the analysis of the imagery was the first evidence that faults can move backwards.
“Even small stress perturbations from distant earthquakes can cause faults to move a little bit, but it’s only been known to cause this motion in a forward sense,” Fialko said in a Scripps announcement of the study’s publication in Science. “Here we observed the faults coming backwards, due to relatively small stress changes, which is really quite unusual.”


The article argues that the backward motion on the faults is caused by the dissimilar nature of material within the faults, rather than frictional failure. The results, Failko said, will guide new seismic studies to areas with contrasting fault materials and can then be used to identify potentially active faults.

Co-author Peter Shearer of Scripps credited the study’s detailed results to the “breakthrough” offered by InSAR technology.

“Prior to InSAR, all we had were spot measurements of the deformation field,” the Scripps scientist said. “With InSAR we have millions of points and thus a continuous picture of the deformation across southern California.”

Using the satellite data, the study was able to document both vertical and horizontal terrain displacements of several millimetres to several centimetres across kilometre-wide zones centred on faults.

“The findings became possible due to highly successful satellite missions of the European Space Agency,” the scientists were cited as saying by the Scripps announcement.

In the Science article, the authors pointed out that the earthquake area had been imaged repeatedly by ESA’s ERS-1 and ERS-2 satellites over the past 10 years. The research team generated and analysed all possible interferometric pairs that included the earthquake date, ending up with 15 interferograms from a descending orbit, and five interferograms from an ascending orbit.

The first synthetic aperture radar was launched in 1991 as one of three main instruments on ESA’s ERS-1 satellite. It was followed by a second on ERS-2 in 1995. These highly successful ESA satellites have collected a wealth of valuable data on the Earth’s land surfaces, oceans, and polar caps. Today, several hundred research groups worldwide use ERS data to further their studies. With ERS data, the InSAR technique represents a major breakthrough in Earth sciences, allowing scientists to understand better earthquakes and other natural events.

Europe’s latest environmental satellite, Envisat, was launched earlier this year carrying an advanced SAR (ASAR). Envisat’s ASAR instrument is the first permanent spaceborne radar to incorporate dual-polarisation capabilities - the instrument can transmit and receive signals in either horizontal or vertical polarisation. This dramatically improves the capability of SAR to discriminate between different types of terrain compared with the sensors on the earlier ERS generation of satellites, while offering a continuity of service to users working with the InSAR technique.

Henri Laur | alfa
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>