Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA satellite imagery credited with breakthrough in earthquake research


California scientists credit synthetic aperture radar imagery from the European Space Agency with making possible new ways to depict earthquake fault zones and uncovering unusual earthquake-related deformations. Their study of imagery from a 1999 earthquake in the western US could provide a new way to identify active faults and help track when the last earthquake occurred on a fault zone.

Writing in last week’s issue of Science magazine, researchers from the Scripps Institution of Oceanography at the University of California in San Diego, and the California Institute of Technology detailed their studies of the so-called “Hector Mine” earthquake, a magnitude 7.1 earthquake that tore through 28 miles of faults in the Mojave Desert. Named after a nearby abandoned mine in the remote area, the earthquake caused virtually no damage. It was, however, the “perfect” event to use satellite and radar technologies to document unique characteristics of faults, said Scripps’ Yuri Fialko, the study’s lead author.
The earthquake was comprehensively imaged with interferometric synthetic aperture radar (InSAR), which uses a series of satellite recordings to detect changes in the Earth’s surface. The most surprising finding that came out of the analysis of the imagery was the first evidence that faults can move backwards.
“Even small stress perturbations from distant earthquakes can cause faults to move a little bit, but it’s only been known to cause this motion in a forward sense,” Fialko said in a Scripps announcement of the study’s publication in Science. “Here we observed the faults coming backwards, due to relatively small stress changes, which is really quite unusual.”

The article argues that the backward motion on the faults is caused by the dissimilar nature of material within the faults, rather than frictional failure. The results, Failko said, will guide new seismic studies to areas with contrasting fault materials and can then be used to identify potentially active faults.

Co-author Peter Shearer of Scripps credited the study’s detailed results to the “breakthrough” offered by InSAR technology.

“Prior to InSAR, all we had were spot measurements of the deformation field,” the Scripps scientist said. “With InSAR we have millions of points and thus a continuous picture of the deformation across southern California.”

Using the satellite data, the study was able to document both vertical and horizontal terrain displacements of several millimetres to several centimetres across kilometre-wide zones centred on faults.

“The findings became possible due to highly successful satellite missions of the European Space Agency,” the scientists were cited as saying by the Scripps announcement.

In the Science article, the authors pointed out that the earthquake area had been imaged repeatedly by ESA’s ERS-1 and ERS-2 satellites over the past 10 years. The research team generated and analysed all possible interferometric pairs that included the earthquake date, ending up with 15 interferograms from a descending orbit, and five interferograms from an ascending orbit.

The first synthetic aperture radar was launched in 1991 as one of three main instruments on ESA’s ERS-1 satellite. It was followed by a second on ERS-2 in 1995. These highly successful ESA satellites have collected a wealth of valuable data on the Earth’s land surfaces, oceans, and polar caps. Today, several hundred research groups worldwide use ERS data to further their studies. With ERS data, the InSAR technique represents a major breakthrough in Earth sciences, allowing scientists to understand better earthquakes and other natural events.

Europe’s latest environmental satellite, Envisat, was launched earlier this year carrying an advanced SAR (ASAR). Envisat’s ASAR instrument is the first permanent spaceborne radar to incorporate dual-polarisation capabilities - the instrument can transmit and receive signals in either horizontal or vertical polarisation. This dramatically improves the capability of SAR to discriminate between different types of terrain compared with the sensors on the earlier ERS generation of satellites, while offering a continuity of service to users working with the InSAR technique.

Henri Laur | alfa
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>