# Forum for Science, Industry and Business

Search our Site:

## New study casts doubt on validity of standard earthquake-prediction model

19.09.2002

A new study by Stanford University geophysicists is raising serious questions about a fundamental technique used to make long-range earthquake predictions.

Writing in the journal Nature, geophysicists Jessica Murray and Paul Segall show how a widely used earthquake model failed to predict when a long-anticipated magnitude 6 quake would strike the San Andreas Fault in Central California.

In their Sept. 19 Nature study, Murray and Segall analyzed the "time-predictable recurrence model" – a technique for estimating the time when an earthquake will occur. This model is used to calculate the probability of future earthquakes.

Developed by Japanese geophysicists K. Shimazaki and T. Nakata in 1980, the time-predictable model has become a standard tool for hazard prediction in many earthquake-prone regions – including the United States, Japan and New Zealand.

Strain build-up

The time-predictable model is based on the theory that earthquakes in fault zones are caused by the constant build-up and release of strain in the Earth’s crust.

"With a plate boundary like the San Andreas, you have the North American plate on one side and the Pacific plate on the other," explained Segall, a professor of geophysics. "The two plates are moving at a very steady rate with respect to one another, so strain is being put into the system at an essentially constant rate."

When an earthquake occurs on the fault, a certain amount of accumulated strain is released, added Murray, a geophysics graduate student.

"Following the quake, strain builds up again because of the continuous grinding of the tectonic plates," she noted. "According to the time-predictable model, if you know the size of the most recent earthquake and the rate of strain accumulation afterwards, you should be able to forecast the time that the next event will happen simply by dividing the strain released by the strain-accumulation rate."

Parkfield, Calif.

Although the model makes sense on paper, Murray and Segall wanted to put it to the test using long-term data collected in an ideal setting. Their choice was Parkfield – a tiny town in Central California midway between San Francisco and Los Angeles. Perched along the San Andreas Fault, Parkfield has been rocked by a magnitude 6 earthquake every 22 years on average since 1857. The last one struck in 1966, and geologists have been collecting earthquake data there ever since.

"Parkfield is a good place to test the model because we have measurements of surface ground motion during the 1966 earthquake and of the strain that’s been accumulating since," Murray noted. "It’s also located in a fairly simple part of the San Andreas system because it’s on the main strand of the fault and doesn’t have other parallel faults running nearby."

When Murray and Segall applied the time-predictable model to the Parkfield data, they came up with a forecast of when the next earthquake would occur.

"According to the model, a magnitude 6 earthquake should have taken place between 1973 and 1987 – but it didn’t," Murray said. "In fact, 15 years have gone by. Our results show, with 95 percent confidence, that it should definitely have happened before now, and it hasn’t, so that shows that the model doesn’t work – at least in this location."

Could the time-predictable method work in other parts of the fault, including the densely populated metropolitan areas of Northern and Southern California? The researchers have their doubts,

"We used the model at Parkfield where things are fairly simple," Murray observed, "but when you come to the Bay Area or Los Angeles, there are a lot more fault interactions, so it’s probably even less likely to work in those places."

Segall agreed: "I have to say, in my heart, I believe this model is too simplistic. It’s really not likely to work elsewhere, either, but we still should test it at other sites. Lots of people do these kinds of calculations. What Jessica has done, however, is to be extremely careful. She really bent over backwards to try to understand what the uncertainties of these kinds of calculations are – consulting with our colleagues in the Stanford Statistics Department just to make sure that this was done as carefully and precisely as anybody knows how to do. So we feel quite confident that there’s no way to fudge out of this by saying there are uncertainties in the data or in the method."

Use with caution

Segall pointed out that government agencies in a number of Pacific Rim countries routinely use this technique for long-range hazard assessments.

For example, the U.S. Geological Survey (USGS) relied on the time-predictable model and two other models in its widely publicized 1999 report projecting a 70-percent probability of a large quake striking the San Francisco Bay Area by 2030.

"We’re in a tough situation, because agencies like the USGS – which have the responsibility for issuing forecasts so that city planners and builders can use the best available knowledge – have to do the best they can with what information they have." Segall observed. "The message I would send to my geophysical colleagues about this model is, ’Use with caution.’"

Technological advances in earthquake science could make long-range forecasting a reality one day, added Murray, pointing to the recently launched San Andreas Fault drilling experiment in Parkfield under the aegis of USGS and Stanford.

In the mean time, people living in earthquake-prone regions should plan for the inevitable.

"I always tell people to prepare," Segall concluded. "We know big earthquakes have happened in the past, we know they will happen again. We just don’t know when."

Further information:
http://kilauea.Stanford.EDU/paul/
http://quake.wr.usgs.gov/research/parkfield/index.html
http://geopubs.wr.usgs.gov/open-file/of99-517/

### More articles from Earth Sciences:

Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

### Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

### Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

### Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

### Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

### Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige