Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study casts doubt on validity of standard earthquake-prediction model

19.09.2002


A new study by Stanford University geophysicists is raising serious questions about a fundamental technique used to make long-range earthquake predictions.



Writing in the journal Nature, geophysicists Jessica Murray and Paul Segall show how a widely used earthquake model failed to predict when a long-anticipated magnitude 6 quake would strike the San Andreas Fault in Central California.

In their Sept. 19 Nature study, Murray and Segall analyzed the "time-predictable recurrence model" – a technique for estimating the time when an earthquake will occur. This model is used to calculate the probability of future earthquakes.


Developed by Japanese geophysicists K. Shimazaki and T. Nakata in 1980, the time-predictable model has become a standard tool for hazard prediction in many earthquake-prone regions – including the United States, Japan and New Zealand.

Strain build-up

The time-predictable model is based on the theory that earthquakes in fault zones are caused by the constant build-up and release of strain in the Earth’s crust.

"With a plate boundary like the San Andreas, you have the North American plate on one side and the Pacific plate on the other," explained Segall, a professor of geophysics. "The two plates are moving at a very steady rate with respect to one another, so strain is being put into the system at an essentially constant rate."

When an earthquake occurs on the fault, a certain amount of accumulated strain is released, added Murray, a geophysics graduate student.

"Following the quake, strain builds up again because of the continuous grinding of the tectonic plates," she noted. "According to the time-predictable model, if you know the size of the most recent earthquake and the rate of strain accumulation afterwards, you should be able to forecast the time that the next event will happen simply by dividing the strain released by the strain-accumulation rate."

Parkfield, Calif.

Although the model makes sense on paper, Murray and Segall wanted to put it to the test using long-term data collected in an ideal setting. Their choice was Parkfield – a tiny town in Central California midway between San Francisco and Los Angeles. Perched along the San Andreas Fault, Parkfield has been rocked by a magnitude 6 earthquake every 22 years on average since 1857. The last one struck in 1966, and geologists have been collecting earthquake data there ever since.

"Parkfield is a good place to test the model because we have measurements of surface ground motion during the 1966 earthquake and of the strain that’s been accumulating since," Murray noted. "It’s also located in a fairly simple part of the San Andreas system because it’s on the main strand of the fault and doesn’t have other parallel faults running nearby."

When Murray and Segall applied the time-predictable model to the Parkfield data, they came up with a forecast of when the next earthquake would occur.

"According to the model, a magnitude 6 earthquake should have taken place between 1973 and 1987 – but it didn’t," Murray said. "In fact, 15 years have gone by. Our results show, with 95 percent confidence, that it should definitely have happened before now, and it hasn’t, so that shows that the model doesn’t work – at least in this location."

Could the time-predictable method work in other parts of the fault, including the densely populated metropolitan areas of Northern and Southern California? The researchers have their doubts,

"We used the model at Parkfield where things are fairly simple," Murray observed, "but when you come to the Bay Area or Los Angeles, there are a lot more fault interactions, so it’s probably even less likely to work in those places."

Segall agreed: "I have to say, in my heart, I believe this model is too simplistic. It’s really not likely to work elsewhere, either, but we still should test it at other sites. Lots of people do these kinds of calculations. What Jessica has done, however, is to be extremely careful. She really bent over backwards to try to understand what the uncertainties of these kinds of calculations are – consulting with our colleagues in the Stanford Statistics Department just to make sure that this was done as carefully and precisely as anybody knows how to do. So we feel quite confident that there’s no way to fudge out of this by saying there are uncertainties in the data or in the method."

Use with caution

Segall pointed out that government agencies in a number of Pacific Rim countries routinely use this technique for long-range hazard assessments.

For example, the U.S. Geological Survey (USGS) relied on the time-predictable model and two other models in its widely publicized 1999 report projecting a 70-percent probability of a large quake striking the San Francisco Bay Area by 2030.

"We’re in a tough situation, because agencies like the USGS – which have the responsibility for issuing forecasts so that city planners and builders can use the best available knowledge – have to do the best they can with what information they have." Segall observed. "The message I would send to my geophysical colleagues about this model is, ’Use with caution.’"

Technological advances in earthquake science could make long-range forecasting a reality one day, added Murray, pointing to the recently launched San Andreas Fault drilling experiment in Parkfield under the aegis of USGS and Stanford.

In the mean time, people living in earthquake-prone regions should plan for the inevitable.

"I always tell people to prepare," Segall concluded. "We know big earthquakes have happened in the past, we know they will happen again. We just don’t know when."

Mark Shwartz | EurekAlert!
Further information:
http://kilauea.Stanford.EDU/paul/
http://quake.wr.usgs.gov/research/parkfield/index.html
http://geopubs.wr.usgs.gov/open-file/of99-517/

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

The Flexible Grid Involves its Users

27.09.2016 | Information Technology

Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints

27.09.2016 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>