Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interpreting a climate record from 10,000-year-old migrating waters

13.09.2002


Researchers confirm that waters migrating from the surface can take many tens of thousands of years to reach the water table



A team of researchers at Lawrence Livermore National Laboratory in California has confirmed that in drier regions, waters migrating from the surface can take many tens of thousands of years to reach the water table. Since such waters began their underground migration at the time of the last ice age, they hold a scientific and historical record of global climate change. Their results were reported in the inaugural issue of the electronic publication, Vadose Zone Journal www.vadosezonejournal.org, published by the Soil Science Society of America.

These scientists applied one of the largest super computers to study the effect of climate on water movement through this section underneath the surface, called the vadose zone. They used computer simulations to consider how this water chemically interacts with the rocks it migrates through. Because the type and abundance of minerals varies with changes in rock type, they can determine the chemical composition and how fast it changes at any point along the flow path of the water.


In arid environments, the water table is hundreds of meters deep. Although it has been assumed it would take many years for water to migrate to these deep water tables, it has only been recently that evidence has supported this assumption. Studies of the concentrations of conservative tracers and isotopes extracted from waters in the vadose zone have suggested some of these migrating waters may be 10,000 to 100,000 years old. Glassley and his team of researchers, thanks to the super computer’s simulations, now have the proof that these assumptions are valid.

"We were also interested in how big an effect changes in surface temperature and amount of rainfall would have on the water chemistry," noted William Glassley, leader of the team. To their surprise, these climate changes had a measurable impact on the water chemistry, even after thousands of years and after migrating hundreds of meters through the vadose zone.

"What this implies is in principle, one could use a combination of water temperature, water chemistry, abundance of water, and isotopic signatures to reconstruct past climate conditions on a regional scale on most continents. This is one of the things needed to test and verify global climate change models," said Glassley.

To interpret such a climate record, however requires conducting highly detailed computer simulations of a large amount of data describing the properties of the rocks on a scale not usually measured. There are also a few properties, such as how much surface area of a mineral the migrating water would travel through, that still cannot be established. Nevertheless, the results of these simulations indicate it may not be too long before records of climate change can be constructed for the last 100,000 years.

Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication launched in August 2002 by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

As a startup, Vadose Zone Journal will be quarterly, with two issues during the 2002 volume. The public and scientific community have free trial access to the Journal through the end of this year. Visit www.vadosezonejournal.org to view the first issue, subscribe, or to view submission guidelines.

Sara Procknow | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://www.vadosezonejournal.org

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>