Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interpreting a climate record from 10,000-year-old migrating waters

13.09.2002


Researchers confirm that waters migrating from the surface can take many tens of thousands of years to reach the water table



A team of researchers at Lawrence Livermore National Laboratory in California has confirmed that in drier regions, waters migrating from the surface can take many tens of thousands of years to reach the water table. Since such waters began their underground migration at the time of the last ice age, they hold a scientific and historical record of global climate change. Their results were reported in the inaugural issue of the electronic publication, Vadose Zone Journal www.vadosezonejournal.org, published by the Soil Science Society of America.

These scientists applied one of the largest super computers to study the effect of climate on water movement through this section underneath the surface, called the vadose zone. They used computer simulations to consider how this water chemically interacts with the rocks it migrates through. Because the type and abundance of minerals varies with changes in rock type, they can determine the chemical composition and how fast it changes at any point along the flow path of the water.


In arid environments, the water table is hundreds of meters deep. Although it has been assumed it would take many years for water to migrate to these deep water tables, it has only been recently that evidence has supported this assumption. Studies of the concentrations of conservative tracers and isotopes extracted from waters in the vadose zone have suggested some of these migrating waters may be 10,000 to 100,000 years old. Glassley and his team of researchers, thanks to the super computer’s simulations, now have the proof that these assumptions are valid.

"We were also interested in how big an effect changes in surface temperature and amount of rainfall would have on the water chemistry," noted William Glassley, leader of the team. To their surprise, these climate changes had a measurable impact on the water chemistry, even after thousands of years and after migrating hundreds of meters through the vadose zone.

"What this implies is in principle, one could use a combination of water temperature, water chemistry, abundance of water, and isotopic signatures to reconstruct past climate conditions on a regional scale on most continents. This is one of the things needed to test and verify global climate change models," said Glassley.

To interpret such a climate record, however requires conducting highly detailed computer simulations of a large amount of data describing the properties of the rocks on a scale not usually measured. There are also a few properties, such as how much surface area of a mineral the migrating water would travel through, that still cannot be established. Nevertheless, the results of these simulations indicate it may not be too long before records of climate change can be constructed for the last 100,000 years.

Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication launched in August 2002 by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

As a startup, Vadose Zone Journal will be quarterly, with two issues during the 2002 volume. The public and scientific community have free trial access to the Journal through the end of this year. Visit www.vadosezonejournal.org to view the first issue, subscribe, or to view submission guidelines.

Sara Procknow | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://www.vadosezonejournal.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>