Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interpreting a climate record from 10,000-year-old migrating waters

13.09.2002


Researchers confirm that waters migrating from the surface can take many tens of thousands of years to reach the water table



A team of researchers at Lawrence Livermore National Laboratory in California has confirmed that in drier regions, waters migrating from the surface can take many tens of thousands of years to reach the water table. Since such waters began their underground migration at the time of the last ice age, they hold a scientific and historical record of global climate change. Their results were reported in the inaugural issue of the electronic publication, Vadose Zone Journal www.vadosezonejournal.org, published by the Soil Science Society of America.

These scientists applied one of the largest super computers to study the effect of climate on water movement through this section underneath the surface, called the vadose zone. They used computer simulations to consider how this water chemically interacts with the rocks it migrates through. Because the type and abundance of minerals varies with changes in rock type, they can determine the chemical composition and how fast it changes at any point along the flow path of the water.


In arid environments, the water table is hundreds of meters deep. Although it has been assumed it would take many years for water to migrate to these deep water tables, it has only been recently that evidence has supported this assumption. Studies of the concentrations of conservative tracers and isotopes extracted from waters in the vadose zone have suggested some of these migrating waters may be 10,000 to 100,000 years old. Glassley and his team of researchers, thanks to the super computer’s simulations, now have the proof that these assumptions are valid.

"We were also interested in how big an effect changes in surface temperature and amount of rainfall would have on the water chemistry," noted William Glassley, leader of the team. To their surprise, these climate changes had a measurable impact on the water chemistry, even after thousands of years and after migrating hundreds of meters through the vadose zone.

"What this implies is in principle, one could use a combination of water temperature, water chemistry, abundance of water, and isotopic signatures to reconstruct past climate conditions on a regional scale on most continents. This is one of the things needed to test and verify global climate change models," said Glassley.

To interpret such a climate record, however requires conducting highly detailed computer simulations of a large amount of data describing the properties of the rocks on a scale not usually measured. There are also a few properties, such as how much surface area of a mineral the migrating water would travel through, that still cannot be established. Nevertheless, the results of these simulations indicate it may not be too long before records of climate change can be constructed for the last 100,000 years.

Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication launched in August 2002 by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

As a startup, Vadose Zone Journal will be quarterly, with two issues during the 2002 volume. The public and scientific community have free trial access to the Journal through the end of this year. Visit www.vadosezonejournal.org to view the first issue, subscribe, or to view submission guidelines.

Sara Procknow | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://www.vadosezonejournal.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>