Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA scientists determined to unearth origin of the Iturralde Crater

09.09.2002


NASA scientists will venture into an isolated part of the Bolivian Amazon to try and uncover the origin of a 5 mile (8 kilometer) diameter crater there known as the Iturralde Crater. Traveling to this inhospitable forest setting, the Iturralde Crater Expedition 2002 will seek to determine if the unusual circular crater was created by a meteor or comet.



Organized by Dr. Peter Wasilewski of NASA’s Goddard Space Flight Center, Greenbelt, Md., the Iturralde Crater Expedition 2002 will be led by Dr. Tim Killeen of Conservation International, which is based in Bolivia. Killeen will be assisted by Dr. Compton Tucker of Goddard.

The team intends to collect and analyze rocks and soil, look for glass particles that develop from meteor impacts and study magnetic properties in the area to determine if the Iturralde site, discovered in the mid-1980s with satellite imagery, was indeed created by a meteor.


If a meteorite is responsible for the impression, rocks in the area will have shock features that do not develop under normal geological circumstances. The team will also look for glass particles, which develop from the high temperatures of impact.

The Iturralde Crater Expedition 2002 team will extensively analyze soil in the impact zone for confirmation of an impact. One unique aspect of the Iturralde site is the 4-5 km deep surface sediment above the bedrock. Thus the impact was more of a gigantic "splat" rather than a collision into bedrock.

The large crater is only 1 meter lower in elevation than the surrounding area. Water collects within the depression, but not on the rim of the crater, which is slightly higher than both the surrounding landscape and the interior of the crater. These subtle differences in drainage are reflected in the forest and grassland habitats that developed on the landscape. It is precisely these differences in the vegetation structure that can be observed from space and which led to the identification of the Iturralde Crater in the 1970s when Landsat Images first became available for Bolivia.

Impact craters can also be confirmed through the magnetic study of the impact zone. Dr. Wasilewski’s team will conduct ground magnetometer surveys and will examine the area through an unmanned aerial vehicle plane fitted with a magnetometer, an instrument for measuring the magnitude and direction of magnetic field. The resulting data will be analyzed by associating the magnetic readings with geographical coordinates, to map magnetic properties of the area. The magnetometer data could provide conclusive evidence as to whether or not the Iturralde feature is an impact crater.

The Iturralde Crater Expedition 2002 expedition also contains an education component. Teachers from around the world who are involved with the teacher professional development program, called Teacher as Scientist, have helped to design the expedition. One teacher will actually be on-site assisting with data collection.

University students from Bolivia will also be involved in the expedition. The educational element of the expedition is just as important as the science results," said Goddard engineer Patrick Coronado. "This is one of those experiments that stirs the imagination, where science and technology come head-to-head with nature in an attempt to unlock its secrets."

Krishna Ramanujan | EurekAlert!
Further information:
http://www.blueiceonline.org
http://www.gsfc.nasa.gov/topstory/20020904icecrater.html

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>