Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA scientists determined to unearth origin of the Iturralde Crater


NASA scientists will venture into an isolated part of the Bolivian Amazon to try and uncover the origin of a 5 mile (8 kilometer) diameter crater there known as the Iturralde Crater. Traveling to this inhospitable forest setting, the Iturralde Crater Expedition 2002 will seek to determine if the unusual circular crater was created by a meteor or comet.

Organized by Dr. Peter Wasilewski of NASA’s Goddard Space Flight Center, Greenbelt, Md., the Iturralde Crater Expedition 2002 will be led by Dr. Tim Killeen of Conservation International, which is based in Bolivia. Killeen will be assisted by Dr. Compton Tucker of Goddard.

The team intends to collect and analyze rocks and soil, look for glass particles that develop from meteor impacts and study magnetic properties in the area to determine if the Iturralde site, discovered in the mid-1980s with satellite imagery, was indeed created by a meteor.

If a meteorite is responsible for the impression, rocks in the area will have shock features that do not develop under normal geological circumstances. The team will also look for glass particles, which develop from the high temperatures of impact.

The Iturralde Crater Expedition 2002 team will extensively analyze soil in the impact zone for confirmation of an impact. One unique aspect of the Iturralde site is the 4-5 km deep surface sediment above the bedrock. Thus the impact was more of a gigantic "splat" rather than a collision into bedrock.

The large crater is only 1 meter lower in elevation than the surrounding area. Water collects within the depression, but not on the rim of the crater, which is slightly higher than both the surrounding landscape and the interior of the crater. These subtle differences in drainage are reflected in the forest and grassland habitats that developed on the landscape. It is precisely these differences in the vegetation structure that can be observed from space and which led to the identification of the Iturralde Crater in the 1970s when Landsat Images first became available for Bolivia.

Impact craters can also be confirmed through the magnetic study of the impact zone. Dr. Wasilewski’s team will conduct ground magnetometer surveys and will examine the area through an unmanned aerial vehicle plane fitted with a magnetometer, an instrument for measuring the magnitude and direction of magnetic field. The resulting data will be analyzed by associating the magnetic readings with geographical coordinates, to map magnetic properties of the area. The magnetometer data could provide conclusive evidence as to whether or not the Iturralde feature is an impact crater.

The Iturralde Crater Expedition 2002 expedition also contains an education component. Teachers from around the world who are involved with the teacher professional development program, called Teacher as Scientist, have helped to design the expedition. One teacher will actually be on-site assisting with data collection.

University students from Bolivia will also be involved in the expedition. The educational element of the expedition is just as important as the science results," said Goddard engineer Patrick Coronado. "This is one of those experiments that stirs the imagination, where science and technology come head-to-head with nature in an attempt to unlock its secrets."

Krishna Ramanujan | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>