Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seabed Research Will Have Global Significance

06.09.2002

Sediments in the Arabian Sea will be examined by an international scientific expedition led by a researcher from the University of Edinburgh to increase understanding of the natural processes of the ocean floor and establish its significance for global cycles and climate change. Robotic research platforms will be deployed on the sea floor to study deep-sea organisms and their impacts on sedimentary processes, without removing the creatures from their natural environment. Monsoons—winds that blow in opposite directions at different times of year— cause the Arabian Sea to be a site of huge productivity and create a mid-depth layer of intensely oxygen-depleted water. Production of plant life in the surface waters and subsequent transformations in underlying waters and sediments represent important terms in the global carbon, nitrogen and phosphorous cycles, which, in turn, affect climate. Fluxes of dissolved metals, nutrients and organic matter from oxygen-depleted sediments are also of potential global importance.

Although a number of scientific expeditions have visited the Arabian Sea during the past decade, the ocean floor has received little attention because of difficulties in accessing the seabed. The benthic (sedimentary) communities, which range from bacteria to surface-dwelling crabs and deeply burrowing worms, strongly influence the physical state of the sediments and a wide range of important geochemical processes because of the way they mix and irrigate the seafloor deposits. Expedition leader Dr Greg Cowie of the Geology and Geophysics Department said: “The Arabian Sea sediments form a ‘factory’ where nutrients, metals and organic matter undergo major transformations. This is especially true at depths of between 200 and 1000 metres where oxygen-depleted waters bathe the Arabian Sea’s margins. Because of the remote setting and consequent difficulty in studying organisms in their natural environment, very little information is available on the mechanisms and impacts of faunal contribution to seafloor processes. This remains a major gap in our understanding of how the sediment system functions.”

The scientific team will study conditions across the oxygen minimum zone (OMZ) on the Indus margin of the Arabian Sea, which serves as a natural laboratory. “We will carry out studies of the faunal communities under contrasting oxygen levels at sites across the OMZ, alongside detailed assessments of sediment geochemistry,” said Greg Cowie.

Platforms, known as benthic landers, will be set up on the seafloor and used for incubation experiments in which tracers will be used to examine sediment processing by benthic creatures and its impact on nutrient, metal and organic matter cycling. The information obtained will help improve our understanding of the workings of the sea-bed and their connection with geochemical cycles and climate changes. The expedition will consist of four cruises on the RRS Charles Darwin in 2003.

Linda Menzies | AlphaGalileo

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>