Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists zero in on Arctic, hemisphere-wide climate swings

30.08.2002


In the late 1990s, as scientists were reaching consensus that the Arctic had gone through 30 years of significant climate change, they began reading the first published papers about the Arctic Oscillation, a phenomenon reported to have hemisphere-wide effects.



In short order the arctic-science and the global-change communities were galvanized, says Richard Moritz, polar oceanographer with the UW’s Applied Physics Laboratory and lead author of a review of recent Arctic climate change in the Aug. 30 special polar-science issue of Science.

"We’ve learned more about the dynamics of post-glacial arctic climate change in the last five years than in the 50 years previous," Moritz says. "For example, the recent trend in the Arctic Oscillation explains the warming observed in the Arctic better than anything else."


Advances in understanding arctic climate change are particularly timely, with some studies indicating that the recent trend in the Arctic Oscillation results partly from human activities that generate greenhouse gases and sulfate particles, and deplete stratospheric ozone. Scientists, planners and policymakers need to know what the changes of the last 30 years portend.

Thus climate modelers have redoubled their efforts to determine the physics behind the patterns of change. Although their models portray realistic day-to-day and month-to-month variations in the Arctic Oscillation, they fail to capture the magnitude of the longer term trend in the Arctic Oscillation that was observed from 1970 to 2000. While paleoclimatologists studying the climate record of the past 1,000 years have not reached a consensus on the importance of the Arctic Oscillation pattern over this longer period, some surprising findings indicate that past Arctic warmings tended to coincide with low-frequency El Nino-Southern Oscillation events in the tropical Pacific.

The review by Moritz and co-authors Cecilia Bitz, a sea-ice expert with the UW’s Applied Physics Laboratory, and Eric Steig, assistant professor with the UW’s Quaternary Research Center, refers to more than 80 published papers, most appearing in just the last two years. The co-authors say that warming of the surface from 1970 to 2000 in the Northern Hemisphere was greatest in the Arctic, causing changes in precipitation, snow cover and the extent of sea ice.

The Arctic Oscillation is a seesaw pattern in which atmospheric pressure at the polar and middle latitudes fluctuates between positive and negative phases. The wind patterns associated with the Arctic Oscillation affect the surface temperature over North America and Eurasia, as well as the Arctic. The Arctic Oscillation was first described in a 1998 article by David Thompson, then a graduate student at the UW and now an assistant professor at Colorado State University, and John M. Wallace, a UW professor.

"The Arctic Oscillation provides a very fruitful framework and the result is that a tremendous amount of work has been done in a relatively short period of time," Moritz says. "Attempts to model the pattern of recent Arctic and global warming have to come to grips with the problem of the Arctic Oscillation." Climate modelers have benefited from a growing understanding of sea-ice physics and the best-ever measurements of how heat from the sun and the atmosphere affects the pack ice that covers the Arctic Ocean. Moritz, for example, is director of the SHEBA (Surface Heat Budget of the Arctic Ocean) Project Office funded by the National Science foundation and Office of Naval Research. Now in its analysis phase, SHEBA locked an icebreaker into the pack ice for a full year in the late ’90s to measure the interactions of the ice, atmosphere and the ocean during all four seasons.

Because so many climate modelers worldwide are working on the Arctic Oscillation, Moritz says it’s conceivable that in a year or two we will understand the fundamental physics of the Arctic Oscillation, and be able to account for its recent trend. "If we can’t, it won’t be for lack of trying."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>