Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists zero in on Arctic, hemisphere-wide climate swings

30.08.2002


In the late 1990s, as scientists were reaching consensus that the Arctic had gone through 30 years of significant climate change, they began reading the first published papers about the Arctic Oscillation, a phenomenon reported to have hemisphere-wide effects.



In short order the arctic-science and the global-change communities were galvanized, says Richard Moritz, polar oceanographer with the UW’s Applied Physics Laboratory and lead author of a review of recent Arctic climate change in the Aug. 30 special polar-science issue of Science.

"We’ve learned more about the dynamics of post-glacial arctic climate change in the last five years than in the 50 years previous," Moritz says. "For example, the recent trend in the Arctic Oscillation explains the warming observed in the Arctic better than anything else."


Advances in understanding arctic climate change are particularly timely, with some studies indicating that the recent trend in the Arctic Oscillation results partly from human activities that generate greenhouse gases and sulfate particles, and deplete stratospheric ozone. Scientists, planners and policymakers need to know what the changes of the last 30 years portend.

Thus climate modelers have redoubled their efforts to determine the physics behind the patterns of change. Although their models portray realistic day-to-day and month-to-month variations in the Arctic Oscillation, they fail to capture the magnitude of the longer term trend in the Arctic Oscillation that was observed from 1970 to 2000. While paleoclimatologists studying the climate record of the past 1,000 years have not reached a consensus on the importance of the Arctic Oscillation pattern over this longer period, some surprising findings indicate that past Arctic warmings tended to coincide with low-frequency El Nino-Southern Oscillation events in the tropical Pacific.

The review by Moritz and co-authors Cecilia Bitz, a sea-ice expert with the UW’s Applied Physics Laboratory, and Eric Steig, assistant professor with the UW’s Quaternary Research Center, refers to more than 80 published papers, most appearing in just the last two years. The co-authors say that warming of the surface from 1970 to 2000 in the Northern Hemisphere was greatest in the Arctic, causing changes in precipitation, snow cover and the extent of sea ice.

The Arctic Oscillation is a seesaw pattern in which atmospheric pressure at the polar and middle latitudes fluctuates between positive and negative phases. The wind patterns associated with the Arctic Oscillation affect the surface temperature over North America and Eurasia, as well as the Arctic. The Arctic Oscillation was first described in a 1998 article by David Thompson, then a graduate student at the UW and now an assistant professor at Colorado State University, and John M. Wallace, a UW professor.

"The Arctic Oscillation provides a very fruitful framework and the result is that a tremendous amount of work has been done in a relatively short period of time," Moritz says. "Attempts to model the pattern of recent Arctic and global warming have to come to grips with the problem of the Arctic Oscillation." Climate modelers have benefited from a growing understanding of sea-ice physics and the best-ever measurements of how heat from the sun and the atmosphere affects the pack ice that covers the Arctic Ocean. Moritz, for example, is director of the SHEBA (Surface Heat Budget of the Arctic Ocean) Project Office funded by the National Science foundation and Office of Naval Research. Now in its analysis phase, SHEBA locked an icebreaker into the pack ice for a full year in the late ’90s to measure the interactions of the ice, atmosphere and the ocean during all four seasons.

Because so many climate modelers worldwide are working on the Arctic Oscillation, Moritz says it’s conceivable that in a year or two we will understand the fundamental physics of the Arctic Oscillation, and be able to account for its recent trend. "If we can’t, it won’t be for lack of trying."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>