Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists zero in on Arctic, hemisphere-wide climate swings


In the late 1990s, as scientists were reaching consensus that the Arctic had gone through 30 years of significant climate change, they began reading the first published papers about the Arctic Oscillation, a phenomenon reported to have hemisphere-wide effects.

In short order the arctic-science and the global-change communities were galvanized, says Richard Moritz, polar oceanographer with the UW’s Applied Physics Laboratory and lead author of a review of recent Arctic climate change in the Aug. 30 special polar-science issue of Science.

"We’ve learned more about the dynamics of post-glacial arctic climate change in the last five years than in the 50 years previous," Moritz says. "For example, the recent trend in the Arctic Oscillation explains the warming observed in the Arctic better than anything else."

Advances in understanding arctic climate change are particularly timely, with some studies indicating that the recent trend in the Arctic Oscillation results partly from human activities that generate greenhouse gases and sulfate particles, and deplete stratospheric ozone. Scientists, planners and policymakers need to know what the changes of the last 30 years portend.

Thus climate modelers have redoubled their efforts to determine the physics behind the patterns of change. Although their models portray realistic day-to-day and month-to-month variations in the Arctic Oscillation, they fail to capture the magnitude of the longer term trend in the Arctic Oscillation that was observed from 1970 to 2000. While paleoclimatologists studying the climate record of the past 1,000 years have not reached a consensus on the importance of the Arctic Oscillation pattern over this longer period, some surprising findings indicate that past Arctic warmings tended to coincide with low-frequency El Nino-Southern Oscillation events in the tropical Pacific.

The review by Moritz and co-authors Cecilia Bitz, a sea-ice expert with the UW’s Applied Physics Laboratory, and Eric Steig, assistant professor with the UW’s Quaternary Research Center, refers to more than 80 published papers, most appearing in just the last two years. The co-authors say that warming of the surface from 1970 to 2000 in the Northern Hemisphere was greatest in the Arctic, causing changes in precipitation, snow cover and the extent of sea ice.

The Arctic Oscillation is a seesaw pattern in which atmospheric pressure at the polar and middle latitudes fluctuates between positive and negative phases. The wind patterns associated with the Arctic Oscillation affect the surface temperature over North America and Eurasia, as well as the Arctic. The Arctic Oscillation was first described in a 1998 article by David Thompson, then a graduate student at the UW and now an assistant professor at Colorado State University, and John M. Wallace, a UW professor.

"The Arctic Oscillation provides a very fruitful framework and the result is that a tremendous amount of work has been done in a relatively short period of time," Moritz says. "Attempts to model the pattern of recent Arctic and global warming have to come to grips with the problem of the Arctic Oscillation." Climate modelers have benefited from a growing understanding of sea-ice physics and the best-ever measurements of how heat from the sun and the atmosphere affects the pack ice that covers the Arctic Ocean. Moritz, for example, is director of the SHEBA (Surface Heat Budget of the Arctic Ocean) Project Office funded by the National Science foundation and Office of Naval Research. Now in its analysis phase, SHEBA locked an icebreaker into the pack ice for a full year in the late ’90s to measure the interactions of the ice, atmosphere and the ocean during all four seasons.

Because so many climate modelers worldwide are working on the Arctic Oscillation, Moritz says it’s conceivable that in a year or two we will understand the fundamental physics of the Arctic Oscillation, and be able to account for its recent trend. "If we can’t, it won’t be for lack of trying."

Sandra Hines | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>