Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric wave linked to sea ice flow near Greenland, study finds

29.08.2002


A NASA researcher finds that the amount of sea ice that moves between Greenland and Spitsbergen, a group of islands north of Norway, is dependent upon a "wave" of atmospheric pressure at sea level. By being able to estimate how much sea ice is exported through this region, called Fram Strait, scientists may develop further insights into how the ice impacts global climate.



This export of sea ice helps control the thermohaline circulation, a deep water ocean conveyor belt that moves warm, salty water poleward and cold, fresh water toward the equator. The thermohaline circulation is one of the primary mechanisms that maintains the global heat balance.

Don Cavalieri, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Md., discovered a link between the transport of sea ice through this region and the position or phase of the longest sea level pressure wave circling the Earth at polar latitudes.


Until now, scientists have had inconsistent results when trying to identify the mechanism behind this transport of sea ice. The North Atlantic Oscillation, in particular, was unable to explain the changes in sea ice transport through Fram Strait.

"The significance of this work is the connection between the phase of the longest atmospheric wave called ’wave 1’ in sea level pressure and long-term Arctic Ocean and sea ice variability," said Cavalieri.

Sea level pressure is made up of high and low pressure systems as any weather map will show. The large-scale semi-permanent highs and lows define the longest pressure waves which are called planetary waves because they extend thousands of miles and circle the world. The longest wave, called wave 1, is made up of one ridge (high pressure) and one trough (low pressure). It turns out that wave 1 is the dominant pattern at polar latitudes. Because these planetary waves are so dominant in wintertime atmospheric circulation their amplitudes (strength) and phases (position) provide useful information on large-scale wind patterns and thus on sea ice transport.

The Icelandic Low is the primary weather system in the North Atlantic. At times this low pressure system extends northeastward into the Barents Sea. When this happens a secondary low pressure system may develop in the Barents Sea region. It is the counterclockwise circulation around this secondary low pressure system in the Barents Sea that drives sea ice through the Fram Strait. Whenever this secondary low pressure system exists, wave 1 shifts eastward and is said to be in its eastward phase, as opposed to a westward phase.

When wave 1 is in its westward mode, the Icelandic Low is more intense and localized, no longer extending to the Barents Sea. Because of the position of the Low relative to the Strait, the winds are more westerly and less ice is forced southward through Fram Strait.

Variations in the phase of wave 1 between these two extreme modes also seem to control the cycle of Arctic Ocean circulation which reverses from clockwise to counterclockwise (or anticyclonic to cyclonic, respectively) every 6 or 7 years.

Cavalieri used simulations for the 40 year period (1958-1997) from two computer models to obtain a record of the volume of sea ice that moved through Fram Strait. The two models each showed a similar correlation between the eastward phase of wave 1 and movement of sea ice through the strait, with the exception of two anomalous years between 1966 and 1967. When those years were removed, one ice-ocean model, using monthly surface wind and air temperature data, found that the wave 1 eastward phase explained 70 percent of Arctic ice export through Fram Strait, while the other model, which used daily surface wind and air temperature data, accounted for 60 percent of the sea ice export.

Cavalieri also used Northern Hemisphere monthly sea level pressure grids to obtain phase and amplitude information for wave 1.

The paper appeared in a recent issue of Geophysical Research Letters.


The study was funded by NASA’s Cryospheric Sciences Research Program.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020807seaice.html

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>