Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric wave linked to sea ice flow near Greenland, study finds

29.08.2002


A NASA researcher finds that the amount of sea ice that moves between Greenland and Spitsbergen, a group of islands north of Norway, is dependent upon a "wave" of atmospheric pressure at sea level. By being able to estimate how much sea ice is exported through this region, called Fram Strait, scientists may develop further insights into how the ice impacts global climate.



This export of sea ice helps control the thermohaline circulation, a deep water ocean conveyor belt that moves warm, salty water poleward and cold, fresh water toward the equator. The thermohaline circulation is one of the primary mechanisms that maintains the global heat balance.

Don Cavalieri, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Md., discovered a link between the transport of sea ice through this region and the position or phase of the longest sea level pressure wave circling the Earth at polar latitudes.


Until now, scientists have had inconsistent results when trying to identify the mechanism behind this transport of sea ice. The North Atlantic Oscillation, in particular, was unable to explain the changes in sea ice transport through Fram Strait.

"The significance of this work is the connection between the phase of the longest atmospheric wave called ’wave 1’ in sea level pressure and long-term Arctic Ocean and sea ice variability," said Cavalieri.

Sea level pressure is made up of high and low pressure systems as any weather map will show. The large-scale semi-permanent highs and lows define the longest pressure waves which are called planetary waves because they extend thousands of miles and circle the world. The longest wave, called wave 1, is made up of one ridge (high pressure) and one trough (low pressure). It turns out that wave 1 is the dominant pattern at polar latitudes. Because these planetary waves are so dominant in wintertime atmospheric circulation their amplitudes (strength) and phases (position) provide useful information on large-scale wind patterns and thus on sea ice transport.

The Icelandic Low is the primary weather system in the North Atlantic. At times this low pressure system extends northeastward into the Barents Sea. When this happens a secondary low pressure system may develop in the Barents Sea region. It is the counterclockwise circulation around this secondary low pressure system in the Barents Sea that drives sea ice through the Fram Strait. Whenever this secondary low pressure system exists, wave 1 shifts eastward and is said to be in its eastward phase, as opposed to a westward phase.

When wave 1 is in its westward mode, the Icelandic Low is more intense and localized, no longer extending to the Barents Sea. Because of the position of the Low relative to the Strait, the winds are more westerly and less ice is forced southward through Fram Strait.

Variations in the phase of wave 1 between these two extreme modes also seem to control the cycle of Arctic Ocean circulation which reverses from clockwise to counterclockwise (or anticyclonic to cyclonic, respectively) every 6 or 7 years.

Cavalieri used simulations for the 40 year period (1958-1997) from two computer models to obtain a record of the volume of sea ice that moved through Fram Strait. The two models each showed a similar correlation between the eastward phase of wave 1 and movement of sea ice through the strait, with the exception of two anomalous years between 1966 and 1967. When those years were removed, one ice-ocean model, using monthly surface wind and air temperature data, found that the wave 1 eastward phase explained 70 percent of Arctic ice export through Fram Strait, while the other model, which used daily surface wind and air temperature data, accounted for 60 percent of the sea ice export.

Cavalieri also used Northern Hemisphere monthly sea level pressure grids to obtain phase and amplitude information for wave 1.

The paper appeared in a recent issue of Geophysical Research Letters.


The study was funded by NASA’s Cryospheric Sciences Research Program.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020807seaice.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>