Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm age of the oldest meteorite collision on Earth

23.08.2002


A team of geologists has determined the age of the oldest known meteorite impact on Earth – a catastrophic event that generated massive shockwaves across the planet billions of years before a similar event helped wipe out the dinosaurs.



In a study published in the Aug. 23 issue of the journal Science, the research team reports that an ancient meteorite slammed into Earth 3.47 billion years ago.

Scientists have yet to locate any trace of the extraterrestrial object itself or the gigantic crater it produced, but other geological evidence collected on two continents suggests that the meteorite was approximately 12 miles (20 kilometers) wide – roughly twice as big as the one that contributed to the demise of the dinosaurs some 65 million years ago.


"We are reporting on a single meteorite impact that has left deposits in both South Africa and Australia," said Donald R. Lowe, a Stanford professor of geological and environmental sciences who co-authored the Science study. "We have no idea where the actual impact might have been."

To pinpoint when the huge meteorite collided with Earth, Lowe and his colleagues performed highly sensitive geochemical analyses of rock samples collected from two ancient formations well known to geologists: South Africa’s Barberton greenstone belt and Australia’s Pilbara block. The two sites include rocks that formed during the Archean eon more than 3 billion years ago – when Earth was "only" a billion years old and single-celled bacteria were the only living things on the planet.

"In our study, we’re looking at the oldest well-preserved sedimentary and volcanic rocks on Earth," Lowe noted. "They are still quite pristine and give us the oldest window that we have on the formative period in Earth’s history. There are older rocks elsewhere, but they’ve been cooked, heated, twisted and folded, so they don’t tell us very much about what the surface of the early Earth was really like."

Controversial findings

Lowe and Louisiana State University (LSU) geologist Gary R. Byerly – lead author of the Science study – began collecting samples from the South African and Australian formations more than 20 years ago. Although thousands of miles apart, both sites contain 3.5-billion-year-old layers of rock embedded with "spherules" – tiny spherical particles that are a frequent byproduct of meteorite collisions.

"A meteor passes through the atmosphere in about one second, leaving a hole – a vacuum – behind it, but air can’t move in fast enough to fill that hole," Lowe explained. "When the meteor hits the surface, it instantaneously melts and vaporizes rock, and that rock vapor is sucked right back up the hole into the atmosphere. It spreads around the Earth as a rock vapor cloud that eventually condenses and forms droplets that solidify into spherules, which rain back down onto the surface."

The meteorite that led to the dinosaur extinction produced spherule deposits around the world that are less than two centimeters deep. But the spherule beds in South Africa and Australia are much bigger – some 20 to 30 centimeters thick. A chemical analysis of the rocks also has revealed high concentrations of rare metals, such as iridium – rare in terrestrial rocks but common in meteorites.

In the mid-1980s, when Lowe and Byerly first suggested that these iridium- and spherule-rich rock layers were produced by fallout from a meteorite, they were greeted with some skepticism – primarily from geochemists, who argued that the spherules probably did not come from space but were more likely to have been formed through some kind of volcanic activity on Earth.

Doubts remained until two years ago, when isotopic studies confirmed that much of the chromium buried in the rock samples came from an extraterrestrial source.

"That pretty well laid to rest any lingering doubts of their impact origin," Lowe recalled.

SHRIMP technology

To narrow down the timeframe when the meteorite impact occurred, Lowe and Byerly turned to a powerful analytic instrument at Stanford called the Sensitive High-Resolution Ion MicroProbe Reverse Geometry – or SHRIMP RG.

Operated jointly by Stanford and the U.S. Geological Survey (USGS), the SHRIMP RG can rapidly determine the age of minute grains of zircon – one of Nature’s most durable minerals.

"Of all the minerals on Earth, zircons are the most resistant to all the things that can happen to rocks," said USGS scientist Joseph L. Wooden, co-director of the SHRIMP RG and consulting professor in Stanford’s Department of Geological and Environmental Sciences.

Zircons often contain ancient isotopes of radioactive uranium that have been trapped for billions of years.

"The SHRIMP RG makes it possible to work with an individual zircon and quickly determine its age by measuring how much radioactive decay has occurred," noted Wooden, co-author of the Science paper. "To dissolve and prepare individual zircon grains for analysis in a standard lab could take months."

But with the SHRIMP RG, a zircon is simply mounted on a slide, then exposed to a high-energy beam that determines its age in about ten minutes. For the Science study, researchers analyzed about 50 zircons extracted from South African and Australian rocks. According to Wooden, it took about one day for the SHRIMP RG to calculate a more precise age of the zircons – 3.47 billion years, plus or minus 2 million years.

Early Earth

What was Earth like when the ancient collision occurred? No one is certain, but speculation abounds.

"You’ll find that the science of the Archean Earth is full of personalities and controversies, so you can take your choice," Lowe observed.

He and his colleagues point to evidence showing that, 3.5 billion years ago, Earth was mostly covered with water.

"There were probably no large continental blocks like there are today, although there may have been microcontinents – very small pieces of continental-type crust," Lowe said, noting that, if the Archean ocean had the same volume of water as today, it would have been about 2 miles (3.3 kilometers) deep.

"It would have taken only a second or two for a meteor that’s 20 kilometers in diameter to pass through the ocean and impact the rock beneath," Lowe said. "That would generate enormous waves kilometers high that would spread out from the impact site, sweep across the ocean and produce just incredible tsunamis – causing a tremendous amount of erosion on the micrtocontinents and tearing up the bottom of the ocean."

In addition to the 3.47-billion-year-old impact, Lowe and Byerly have found evidence of meteorite collisions in three younger rock layers in the South African formation. According to Lowe, the force of those collisions may have been powerful enough to cause the cracks – or tectonic plates – that riddle the Earth’s crust today.

"In South Africa, two of the younger layers – 3.2 to 3.3 billion years old – coincide with major tectonic changes," he observed. "How come? Maybe those impacts were large enough to affect tectonic systems – to affect the dynamics of the Earth’s crust."

Evolution and meteorites

The impact of these major catastrophes on the evolution of early life is difficult to determine, Lowe observed.

"The most advanced organisms at the time were bacteria, so there isn’t a big extinction event you can identify as cut-and-dry as the extinction of the dinosaurs," he said.

He also pointed to controversy about the fossil record, noting that the oldest known microbial fossils have been found in rocks 3.4 to 3.5 billion years old – roughly the same age as the ancient meteorite collision documented in the Science study.

Could the meteorite somehow have contributed to origin of bacterial life on Earth? Lowe has his doubts: "It’s quite possible that life evolved as far back as 4.3 billion years ago, shortly after the Earth had formed."

He also pointed to uncertainty among scientists about what the climate of the Archean Earth was really like. In a forthcoming study, Lowe will present evidence that the average temperature of the planet back then was very hot - perhaps 185 F (85 C).

"It’s not clear what effect a large meteorite impact would have on an extremely hot Earth," he explained. "We know in terms of the present climate that, if we had a very large impact, it would send enormous amounts of dust into the atmosphere, and the climate might cool. Such a scenario may have contributed to the extinction of dinosaurs. They’re really big guys and they’re very strong, but they’re actually much more susceptible to environmental changes than microbes are. Dinosaurs didn’t have anywhere to go – they couldn’t go underground or avoid cold climates" – unlike bacteria, which have successfully adapted to a variety of extreme conditions.

"It looks like what we are seeing is a much greater rate of the large impacts on the early Earth, certainly than we have today, and perhaps even a much greater rate than what was suspected," Lowe concluded. "I think the effort now will be to try to do studies like this that will enhance our understanding of the impactors on early Earth – to try to find other layers, to understand the mechanics of impact events and how they affected early life."

Mark Shwartz | Stanford University
Further information:
http://shrimprg.stanford.edu
http://pangea.stanford.edu/SED/sedgroup.html
http://www.ucmp.berkeley.edu/precambrian/archaean.html

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>