Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass geologist leads team probing Bering Land Bridge

16.08.2002


Researchers from Woods Hole, Scripps oceanographic institutes sail on new Coast Guard ice breaker to study climate, ocean changes



A University of Massachusetts Amherst geoscientist is part of a team of researchers sailing the Bering and Chukchi seas this summer, searching for clues about the sea floor history and the land bridge that once existed between what is now Alaska and Russia. The team will also explore how the disappearance of the land bridge may have affected that region’s climate. Julie Brigham-Grette and colleagues Lloyd Keigwin of Woods Hole Oceanographic Institute and Neal Driscoll of the Scripps Institution of Oceanography are conducting the research in two separate missions on the U.S. Coast Guard Cutter Healy, an ice-breaking vessel. The project is funded by the National Science Foundation’s Office of Polar Programs and is the first coring program on the new ice breaker. The Healy is 420 feet long, or nearly 1.5 times the length of a football field and nearly eight stories high. This summer is the first official science cruise of the ice breaker in American waters.

The five-month mission of the USCGC Healy to the Bering and Chukchi Seas, which includes two other research projects, will mark one of the most comprehensive scientific deployments ever conducted by a Coast Guard icebreaker, said Brigham-Grette. The team is doing a high-tech, seismic mapping of the area’s ocean floor and its shallow sediments, then taking core samples of the sediments. The science team recently returned from the Bering Sea but will reoccupy the ship Aug. 26-Sept. 17 for work in the Chukchi Sea.


"We want to know how quickly the land bridge formed or was flooded with changes in global sea level, cutting off the migration of people and a wide range of plants and animals," said Brigham-Grette. "And we’re looking at the area’s climate history to understand how the ocean and the atmosphere affected the land, and what happened to the watermasses in the region when the land bridge was submerged," she said. "It’s scientifically exciting because it’s interdisciplinary between the three of us as principal investigators. It’s like putting a puzzle together; with each scientist contributing a different but important puzzle piece."

Brigham-Grette’s expertise is in culling ancient climate records from clues embedded in land, lake, and ocean sediment samples going back tens of thousands of years. Keigwin is an expert at interpreting changes in the temperature and water chemistry of ocean water masses and how these changes are related to past climate change using fossils and ocean sediments. Driscoll specializes in interpreting the layering and displacement of rock and sediments, especially in the distribution of sediments in basins and on continental shelves using geophysics.

Brigham-Grette notes that the Bering Strait has actually been submerged dozens of times, as the glaciers approached and retreated. The submerged subcontinent is known as Beringia. The scientific team hopes to gain an understanding of the paleooceanographic history of the region since the last submergence of the strait, at the end of the last Ice Age, some 20,000 years ago.

When the glaciers melted and the sea level rose, seawater drowned ancient rivers and tundra, creating salty estuaries, Brigham-Grette explained. The seismic exploration led by Driscoll and his students in the Chukchi Sea will locate channels where freshwater rivers once ran, and sediment cores drilled in those areas should offer clues to how quickly the sea level rose. Clues in the layers of deposited mud and silt include fossils and the remains of microscopic plants and animals, such as diatoms (made of silica) and foraminifera (made of carbonate). UMass Amherst graduate student Zach Lundeen, and Woods Hole researchers working with Keigwin will be analyzing the sediments and fossil remains.

"We know the climate was different here back then," said Keigwin. "We hope we can learn how different it was, and how the ocean and atmosphere responded to change. In addition to marine sediments, we hope to get samples of the soils and vegetation that existed on the land bridge. We should be able to learn a lot about how things changed here over time by examining the entire region as an environmental system."

"We are thrilled with the performance of the Healy because this was the first cruise to seismically map the Bering Sea and obtain high resolution sediment cores through the Holocene," said Jane Dionne, program manager for the Arctic Natural Sciences, part of the Office of Polar Programs at the NSF. "This research should greatly advance our understanding of the region and should provide important answers to old questions about the role of the North Pacific in the world circulation system, especially during the past glacial periods."

There is much to be learned about how the Earth works by studying climate change recorded in layers of sediment in the past, says Brigham-Grette. "It’s as if the Earth and its oceans have already run a number of natural experiments in global change for us. It’s our obligation now to read the results of these experiments in the sediments, so that we can use this information to predict the nature of climate change into the future."


Note: Julie Brigham-Grette can be reached at 413/545-4840 or juliebg@geo.umass.edu until Aug. 24.

Elizabeth Luciano | EurekAlert!
Further information:
http://www.geo.umass.edu/beringia/index.html
http://www.uscg.mil/pacarea/healy/

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>