Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic rays linked to global warming

31.07.2002


Researchers studying global warming have often been confounded by the differences between observed increases in surface-level temperatures and unchanging low-atmosphere temperatures. Because of this discrepancy, some have argued that global warming is unproven, suggesting instead that true warming should show uniformly elevated temperatures from the surface through the atmosphere. Researchers have proposed a theory that changes in cloud cover could help explain the puzzling phenomenon, but none-until now-have come up with an argument that could account for the varying heat profiles.



A study in the July 2002 issue of Journal of Geophysical Research-Space Physics, published by the American Geophysical Union, proposes for the first time that interstellar cosmic rays could be the missing link between the discordant temperatures observed during the last two decades (since recorded satellite records began in 1979). The report, by Fangqun Yu of the State University of New York-Albany, proposes that the rays, tiny charged particles that bombard all planets with varying frequency depending on solar wind intensity, may have height-dependent effects on our planet’s cloudiness. Previous research has proposed a link between cosmic rays and cloud cover, has not suggested the altitude dependence of the current study.

"A systematic change in global cloud cover will change the atmospheric heating profile," Yu said. "In other words, the cosmic ray-induced global cloud changes could be the long-sought mechanism connecting solar and climate variability."


The hypothesis, if confirmed, could also shed light on the Sun’s role in global warming. The amount of cosmic rays reaching Earth depends on solar winds, which vary in strength by space-weather conditions. Yu points out that indications of Earth’s warming have coincided with decreased cosmic ray intensity during the 20th century. Such explanations for natural causes of global warming do not rule out human contributions to temperature change, but present the possibility that humans are not solely responsible for some of the observed temperature increases.

In addition, recent satellite data have revealed a correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds. Yu proposes that the amount and charge of cosmic ray-generated ions can contribute to the formation of dense clouds by stimulating the production rate of low-atmosphere particles that make the clouds more opaque. In addition, natural and man-made differences in atmospheric chemistry, like greenhouse gas concentrations, can also affect the cosmic rays’ influence on clouds, according to Yu. Such height-dependent atmospheric differences can increase the quantity of ambient particles in the lower troposphere and decrease the particles in the upper air, thus affecting the type of cloud cover.

High clouds, for example, generally reflect sunlight while lower clouds tend to retain surface energy; both effects are scientifically well established and have a significant effect on global temperatures. The data provides evidence supporting Yu’s claim that cosmic ray-induced cloud changes may have warmed the Earth’s surface but cooled the lower troposphere, which could provide an explanation of the Earth’s varying temperature trends.


The research was supported by the National Science Foundation.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>