Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic rays linked to global warming

31.07.2002


Researchers studying global warming have often been confounded by the differences between observed increases in surface-level temperatures and unchanging low-atmosphere temperatures. Because of this discrepancy, some have argued that global warming is unproven, suggesting instead that true warming should show uniformly elevated temperatures from the surface through the atmosphere. Researchers have proposed a theory that changes in cloud cover could help explain the puzzling phenomenon, but none-until now-have come up with an argument that could account for the varying heat profiles.



A study in the July 2002 issue of Journal of Geophysical Research-Space Physics, published by the American Geophysical Union, proposes for the first time that interstellar cosmic rays could be the missing link between the discordant temperatures observed during the last two decades (since recorded satellite records began in 1979). The report, by Fangqun Yu of the State University of New York-Albany, proposes that the rays, tiny charged particles that bombard all planets with varying frequency depending on solar wind intensity, may have height-dependent effects on our planet’s cloudiness. Previous research has proposed a link between cosmic rays and cloud cover, has not suggested the altitude dependence of the current study.

"A systematic change in global cloud cover will change the atmospheric heating profile," Yu said. "In other words, the cosmic ray-induced global cloud changes could be the long-sought mechanism connecting solar and climate variability."


The hypothesis, if confirmed, could also shed light on the Sun’s role in global warming. The amount of cosmic rays reaching Earth depends on solar winds, which vary in strength by space-weather conditions. Yu points out that indications of Earth’s warming have coincided with decreased cosmic ray intensity during the 20th century. Such explanations for natural causes of global warming do not rule out human contributions to temperature change, but present the possibility that humans are not solely responsible for some of the observed temperature increases.

In addition, recent satellite data have revealed a correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds. Yu proposes that the amount and charge of cosmic ray-generated ions can contribute to the formation of dense clouds by stimulating the production rate of low-atmosphere particles that make the clouds more opaque. In addition, natural and man-made differences in atmospheric chemistry, like greenhouse gas concentrations, can also affect the cosmic rays’ influence on clouds, according to Yu. Such height-dependent atmospheric differences can increase the quantity of ambient particles in the lower troposphere and decrease the particles in the upper air, thus affecting the type of cloud cover.

High clouds, for example, generally reflect sunlight while lower clouds tend to retain surface energy; both effects are scientifically well established and have a significant effect on global temperatures. The data provides evidence supporting Yu’s claim that cosmic ray-induced cloud changes may have warmed the Earth’s surface but cooled the lower troposphere, which could provide an explanation of the Earth’s varying temperature trends.


The research was supported by the National Science Foundation.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>