Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic rays linked to global warming

31.07.2002


Researchers studying global warming have often been confounded by the differences between observed increases in surface-level temperatures and unchanging low-atmosphere temperatures. Because of this discrepancy, some have argued that global warming is unproven, suggesting instead that true warming should show uniformly elevated temperatures from the surface through the atmosphere. Researchers have proposed a theory that changes in cloud cover could help explain the puzzling phenomenon, but none-until now-have come up with an argument that could account for the varying heat profiles.



A study in the July 2002 issue of Journal of Geophysical Research-Space Physics, published by the American Geophysical Union, proposes for the first time that interstellar cosmic rays could be the missing link between the discordant temperatures observed during the last two decades (since recorded satellite records began in 1979). The report, by Fangqun Yu of the State University of New York-Albany, proposes that the rays, tiny charged particles that bombard all planets with varying frequency depending on solar wind intensity, may have height-dependent effects on our planet’s cloudiness. Previous research has proposed a link between cosmic rays and cloud cover, has not suggested the altitude dependence of the current study.

"A systematic change in global cloud cover will change the atmospheric heating profile," Yu said. "In other words, the cosmic ray-induced global cloud changes could be the long-sought mechanism connecting solar and climate variability."


The hypothesis, if confirmed, could also shed light on the Sun’s role in global warming. The amount of cosmic rays reaching Earth depends on solar winds, which vary in strength by space-weather conditions. Yu points out that indications of Earth’s warming have coincided with decreased cosmic ray intensity during the 20th century. Such explanations for natural causes of global warming do not rule out human contributions to temperature change, but present the possibility that humans are not solely responsible for some of the observed temperature increases.

In addition, recent satellite data have revealed a correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds. Yu proposes that the amount and charge of cosmic ray-generated ions can contribute to the formation of dense clouds by stimulating the production rate of low-atmosphere particles that make the clouds more opaque. In addition, natural and man-made differences in atmospheric chemistry, like greenhouse gas concentrations, can also affect the cosmic rays’ influence on clouds, according to Yu. Such height-dependent atmospheric differences can increase the quantity of ambient particles in the lower troposphere and decrease the particles in the upper air, thus affecting the type of cloud cover.

High clouds, for example, generally reflect sunlight while lower clouds tend to retain surface energy; both effects are scientifically well established and have a significant effect on global temperatures. The data provides evidence supporting Yu’s claim that cosmic ray-induced cloud changes may have warmed the Earth’s surface but cooled the lower troposphere, which could provide an explanation of the Earth’s varying temperature trends.


The research was supported by the National Science Foundation.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org/

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>