Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University researchers analyze effects of meteor crash

17.07.2002


What happens when a large meteor crashes into the Earth? The impact of a large meteorite releases an enormous amount of energy that evaporates, melts and fractures areas surrounding the impact over distances that can range over hundreds of kilometers. Although the subject of abundant recent interest, little is directly known about the propagation of damage during these events.



Three researchers from the Hebrew University of Jerusalem have come up with a new picture of damage propagation, which explains the distinctive rock deformations generated by the high-energy shockwaves produced in these extreme conditions. These results provide new insight into meteor impact dynamics as well as dissipative mechanisms in materials subjected to sudden, extremely intense fluxes of energy. Using these results, analysis of deformed rock structures surrounding the site of an intense explosion or impact can provide a quantitative measure of its strength – even if the event occurred a billion years ago.

These findings will be published in the prestigious scientific journal Nature on Thursday, July 18, in the article, “Dynamic Fracture by Large Extraterrestrial Impacts as the Origin of Shatter Cones,” by Ph.D. candidate Amir Sagy, Physics Prof. Jay Fineberg and Geology Prof. Ze’ev Reches.



The article is embargoed until 9 p.m. (2 p.m. EST) on Wednesday, July 17.


For further information, contact:

Heidi Gleit, HU foreign press liaison: tel. 02-588-2904; cell. 064-454-593; email heidig@savion.cc.huji.ac.il

Orit Sulitzeanu, HU spokeswoman: tel. 02-588-2811

Heidi Gleit | Hebrew University

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>