Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapshot of past climate reveals no ice in Antarctica millions of years ago

29.07.2008
A snapshot of New Zealand’s climate 40 million years ago reveals a greenhouse Earth, with warmer seas and little or no ice in Antarctica, according to research published this week in the journal Geology.

The study suggests that Antarctica at that time was yet to develop extensive ice sheets. Back then, New Zealand was about 1100 km further south, at the same latitude as the southern tip of South America – so was closer to Antarctica – but the researchers found that the water temperature was 23-25°C at the sea surface and 11-13°C at the bottom.

“This is too warm to be the Antarctic water we know today,” said Dr Catherine (Cat) Burgess from Cardiff University and lead-author of the paper. “And the seawater chemistry shows there was little or no ice on the planet.”

These new insights come from the chemical analysis of exceptionally well preserved fossils of marine micro-organisms called foraminifers, discovered in marine rocks from New Zealand. The researchers tested the calcium carbonate shells from these fossils, which were found in 40 million-year-old sediments on a cliff face at Hampden Beach, South Island.

“Because the fossils are so well preserved, they provide more accurate temperature records.” added Dr Burgess. “Our findings demonstrate that the water temperature these creatures lived in was much warmer than previous records have shown.”

“Although we did not measure carbon dioxide, several studies suggest that greenhouse gases forty million years ago were similar to those levels that are forecast for the end of this century and beyond.

Our work provides another piece of evidence that, in a time period with relatively high carbon dioxide levels, temperatures were higher and ice sheets were much smaller and likely to have been completely absent.”

The rock sequence from the cliff face covers a time span of 70,000 years and shows cyclical temperature variations with a period of about 18,000 years. The temperature oscillation is likely to be related to the Earth’s orbital patterns.

The research was funded by the Natural Environment Research Council, the Netherlands Organisation for Scientific Research (NOW) and GNS Science, New Zealand.

Issued jointly by the Natural Environment Research Council and Cardiff University.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>