Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Break Record Finding Northernmost Hydrothermal Vent Field

28.07.2008
Well inside the Arctic Circle, scientists have found black smoker vents farther north than anyone has ever seen before. The cluster of five vents – one towering nearly four stories in height – are venting water as hot as 570 F.

Dissolved sulfide minerals that solidify when vent water hits the icy cold of the deep sea have, over the years, accumulated around the vent field in what is one of the most massive hydrothermal sulfide deposits ever found on the seafloor, according to Marvin Lilley, a University of Washington oceanographer.

He's a member of an expedition led by Rolf Pedersen, a geologist with the University of Bergen's Centre for Geobiology, aboard the research vessel G.O. Sars.

The vents are located at 73 degrees north on the Mid-Atlantic Ridge between Greenland and Norway. That's more than 120 miles from the previous northernmost vents found during a 2005 expedition, also led by Pedersen. Other scientists have detected plumes of water from hydrothermal vents even farther north but have been unable to find the vent fields on the seafloor to image and sample them.

In recent years scientists have been interested in knowing how far north vigorous venting extends. That's because the ridges where such fields form are so stable up north, usually subject only to what scientists term "ultra-slow" spreading. That's where tectonic forces are pulling the seafloor apart at a rate as little as 6/10th of an inch in a year. This compares to lower latitudes where spreading can be up to eight times that amount, and fields of hydrothermal vents are much more common.

"We hadn't expected a lot of active venting on ultra-slow spreading ridges," Lilley said.

The active chimneys in the new field are mostly black and covered with white mats of bacteria feasting on the minerals emitted by the vents. Older chimneys are mottled red as a result of iron oxidization. All are the result of seawater seeping into the seafloor, coming near fiery magma and picking up heat and minerals until the water vents back into the ocean. The same process created the huge mound of sulfide minerals on which the vents sit. That deposit is about 825 feet in diameter at its base and about 300 feet across on the top and might turn out to be the largest such deposit seen on the seafloor, Lilley said. Additional mapping is needed.

"Given the massive sulfide deposit, the vent field must surely have been active for many thousands of years," he said.

The field has been named Loki's Castle partly because the small chimneys at the site looked like a fantasy castle to the scientists. The Loki part refers to a Norwegian god renowned for trickery. A University of Bergen press release about the discovery said Loki "was an appropriate name for a field that was so difficult to locate."

Indeed this summer's expedition and the pinpointing of the location of the vents earlier this month follows nearly a decade of research. Finding the actual field involved extensive mapping. It also meant sampling to detect warm water and using optical sensors lowered in the ocean to determine the chemistry, both parts that involved Lilley. He said a key sensor was one developed by Ko-ichi Nakamura of the National Institute for Industrial Science and Technology, Japan, that detects reduced chemicals that are in the water as a result of having been processed through a hydrothermal vent.

A remotely operated vehicle was used to finally find the vents. The difficulties of the task are described in an expedition Web diary, see "Day 17: And then there were vents" at http://www.geobio.uib.no/View.aspx?mid=1062&itemid=90&pageid=1093&moduledefid=71.

The area around the vents was alive with microorganisms and animals. Preliminary observations suggest that the ecosystem around these Arctic vents is diverse and appears to be unique, unlike the vent communities observed elsewhere, the University of Bergen press release said. The expedition included 25 participants from five countries.

Sandra Hines | Newswise Science News
Further information:
http://www.uwnews.org/

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>