Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A single boulder may prove that Antarctica and North America were once connected

21.07.2008
The team's find, they argue, provides physical evidence that confirms the so-called southwestern United States and East Antarctica (SWEAT) hypothesis.

"What this paper does is say that we have three main new lines of evidence that basically confirm the SWEAT idea," said John Goodge, an NSF-funded researcher with the Department of Geological Sciences at the University of Minnesota-Duluth.

Added Scott Borg, director of the division of Antarctic sciences in NSF's Office of Polar Programs, "this is first-rate work and a fascinating example of scientists at work putting together the pieces of a much larger puzzle. Not only do the authors pull together a diverse array of data to address a long-standing question about the evolution of the Earth's crust during a critical time for biological evolution, but the research shows how the ideas surrounding the SWEAT hypothesis have developed over time."

As a field researcher during the late 1980's and early 1990's, Borg authored papers on the SWEAT hypothesis.

The boulder find came by serendipity while the researchers were picking though rubble carried through the Transantarctic Mountains by ice streams-rivers of ice-that flow at literally a glacial pace from East Antarctica.

Goodge and his team were searching for rocks that might provide keys to the composition of the underlying continent crust of Antarctica, which in most places is buried under almost two miles of ice.

"We were picking up boulders in the moraines that looked interesting," Goodge said. "It was basically just a hodge-podge of material."

One rock in particular, small enough to heft in one hand, found atop the Nimrod Glacier, was later determined to be a very specific form of granite with, as Goodge describes it, "a particular type of coarse-grained texture."

Subsequent chemical and isotopic tests conducted in laboratories in the United States revealed that the boulder had a chemistry "very similar to a unique belt of igneous rocks in North America" that stretches from what is now California eastward through New Mexico to Kansas, Illinois and eventually through New Brunswick and Newfoundland in Canada.

That belt of rocks is known to have been a part of what is called Laurentia, which was a component of the supercontinent of Rodinia.

"There is a long, linear belt of these igneous rocks that stretches across Laurentia. But 'bang' it stops, right there at the (western) margin where we knew that something rifted away" from what is now the West Coast of the United States," Goodge said.

"It just ends right where that ancient rift margin is," Goodge said. "And these rocks are basically not found in any other part of the world."

That it should turn up on a glacier high up in the mountains of Antarctica is strong evidence in support of the SWEAT model that parts of North America continue into part of the frozen continent at the bottom of the Earth.

"There's no other explanation for how it got where we found it," Goodge said. "It was bull-dozed over from that interior region of Antarctica."

The find itself is compelling to geologists, Goodge noted, because little other physical evidences exists to allow them directly to put together the jigsaw puzzle of the long-disappeared Rodinia.

But because the supercontinent existed at a key time in the development of multi-cellular life on Earth, it also helps provide a geological context in which this massive biotic change took place.

"During the Cambrian explosion about 520 million years ago we started seeing this huge expansion in the diversity of life forms," Goodge said. "This was also a time when the Earth was undergoing tremendous geologic changes."

He added that "something helped trigger that big radiation in life."

The shifting configuration of the continents, accompanied by collisions between landmasses, erosion and the influx of chemicals into the seas may well have provided the nutrients to that growing diversity of lifeforms.

"There are ideas developing about these connections between the geo-tectonic world on the one hand and biology on the other.

The job of geoscientists in this context, he said "is to reconstruct what the world was like at the time."

Peter West | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=111911&org=NSF

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>