Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunguska catastrophe: Evidence of acid rain supports meteorite theory

16.07.2008
The Tunguska catastrophe in 1908 evidently led to high levels of acid rain. This is the conclusion reached by Russian, Italian and German researchers based on the results of analyses of peat profiles taken from the disaster region.

In peat samples corresponded to 1908 permafrost boundary they found significantly higher levels of the heavy nitrogen and carbon isotopes 15N and 13C.

The highest accumulation levels were measured in the areas at the epicentre of the explosion and along the trajectory of the cosmic body. Increased concentrations of iridium and nitrogen in the relevant peat layers support the theory that the isotope effects discovered are a consequence of the Tunguska catastrophe and are partly of cosmic origin.

It is estimated that around 200,000 tons of nitrogen rained down on the Tunguska region in Siberia at that time. "Extremely high temperatures occurred as the meteorite entered the atmosphere, during which the oxygen in the atmosphere reacted with nitrogen causing a build up of nitrogen oxides," Natalia Kolesnikova told the Russian news agency RIA Novosti on last Monday. Mrs. Kolesnolova is one of the authors of a study by Lomonosov Moscow State University, the University of Bologna and the Helmholtz Centre for Environmental Research (UFZ), which was published in the journal Icarus in 2003.

The Tunguska event is regarded as one of the biggest natural disasters of modern times. On 30 June 1908 one or more explosions took place in the area close to the Tunguska River north of Lake Baikal. The explosion(s) flattened around 80 million trees over an area of more than 2000 square kilometres. The strength of the explosion is estimated to have been equivalent to between five and 30 megatons of TNT.

That is more than a thousand times as powerful as the Hiroshima bomb. This almost unpopulated region of Siberia was first studied in 1927 by Professor Leonid A. Kulik. There are a number of different theories about what caused the catastrophe. However, the majority of scientists assume that it was caused by a cosmic event, such as the impact of a meteorite, asteroid or comet. If it had exploded in the atmosphere just under five hours later, St. Petersburg, which was the capital of Russia at that time, would have been completely destroyed because of the Earth's rotation.

In two expeditions in 1998 and 1999, Russian and Italian researchers took peat profiles from various locations within the Siberian disaster area. The type of moss studied, Sphagnum fuscum, is very common in the peat material and obtains its mineral nutrients exclusively from atmospheric aerosols, which means that it can store terrestrial and extraterrestrial dust. Afterwards, the samples were analysed in laboratories at the University of Bologna and the Helmholtz Centre for Environmental Research (UFZ) in Halle/Saale.

Among other things, the UFZ specialises in isotope analyses of sediments, plants, soil and water and it was asked to help by the team of Moscow researchers led by Dr Evgeniy M. Kolesnikov. Kolesnikov, who has been investigating the Tunguska event for 20 years, has been to Leipzig University and UFZ twice as a guest researcher with the help of the German Research Foundation (DFG) to consult with the isotope experts.

"The levels of accumulation of the heavy carbon isotope 13C measured right on the 1908 permafrost boundary in several peat profiles from the disaster area cannot be explained by any terrestrial process. This suggests that the Tunguska catastrophe had a cosmic explanation and that we have found evidence of this material," explains Dr Tatjana Böttger of the UFZ. Possible causes would be a C-type asteroid like 253 Mathilde, or a comet like Borelly.

Tilo Arnhold | alfa
Further information:
http://www.ufz.de
http://www.ufz.de/index.php?en=16976

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>