Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tunguska catastrophe: Evidence of acid rain supports meteorite theory

The Tunguska catastrophe in 1908 evidently led to high levels of acid rain. This is the conclusion reached by Russian, Italian and German researchers based on the results of analyses of peat profiles taken from the disaster region.

In peat samples corresponded to 1908 permafrost boundary they found significantly higher levels of the heavy nitrogen and carbon isotopes 15N and 13C.

The highest accumulation levels were measured in the areas at the epicentre of the explosion and along the trajectory of the cosmic body. Increased concentrations of iridium and nitrogen in the relevant peat layers support the theory that the isotope effects discovered are a consequence of the Tunguska catastrophe and are partly of cosmic origin.

It is estimated that around 200,000 tons of nitrogen rained down on the Tunguska region in Siberia at that time. "Extremely high temperatures occurred as the meteorite entered the atmosphere, during which the oxygen in the atmosphere reacted with nitrogen causing a build up of nitrogen oxides," Natalia Kolesnikova told the Russian news agency RIA Novosti on last Monday. Mrs. Kolesnolova is one of the authors of a study by Lomonosov Moscow State University, the University of Bologna and the Helmholtz Centre for Environmental Research (UFZ), which was published in the journal Icarus in 2003.

The Tunguska event is regarded as one of the biggest natural disasters of modern times. On 30 June 1908 one or more explosions took place in the area close to the Tunguska River north of Lake Baikal. The explosion(s) flattened around 80 million trees over an area of more than 2000 square kilometres. The strength of the explosion is estimated to have been equivalent to between five and 30 megatons of TNT.

That is more than a thousand times as powerful as the Hiroshima bomb. This almost unpopulated region of Siberia was first studied in 1927 by Professor Leonid A. Kulik. There are a number of different theories about what caused the catastrophe. However, the majority of scientists assume that it was caused by a cosmic event, such as the impact of a meteorite, asteroid or comet. If it had exploded in the atmosphere just under five hours later, St. Petersburg, which was the capital of Russia at that time, would have been completely destroyed because of the Earth's rotation.

In two expeditions in 1998 and 1999, Russian and Italian researchers took peat profiles from various locations within the Siberian disaster area. The type of moss studied, Sphagnum fuscum, is very common in the peat material and obtains its mineral nutrients exclusively from atmospheric aerosols, which means that it can store terrestrial and extraterrestrial dust. Afterwards, the samples were analysed in laboratories at the University of Bologna and the Helmholtz Centre for Environmental Research (UFZ) in Halle/Saale.

Among other things, the UFZ specialises in isotope analyses of sediments, plants, soil and water and it was asked to help by the team of Moscow researchers led by Dr Evgeniy M. Kolesnikov. Kolesnikov, who has been investigating the Tunguska event for 20 years, has been to Leipzig University and UFZ twice as a guest researcher with the help of the German Research Foundation (DFG) to consult with the isotope experts.

"The levels of accumulation of the heavy carbon isotope 13C measured right on the 1908 permafrost boundary in several peat profiles from the disaster area cannot be explained by any terrestrial process. This suggests that the Tunguska catastrophe had a cosmic explanation and that we have found evidence of this material," explains Dr Tatjana Böttger of the UFZ. Possible causes would be a C-type asteroid like 253 Mathilde, or a comet like Borelly.

Tilo Arnhold | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>