Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team draws 150-meter ice core from McCall Glacier

15.07.2008
A 150-meter ice core pulled from the McCall Glacier in the Arctic National Wildlife Refuge this summer may offer researchers their first quantitative look at up to two centuries of climate change in the region.

The core, which is longer than 1 1/2 football fields, is the longest extracted from an arctic glacier in the United States, according to Matt Nolan, an associate professor at the University of Alaska Fairbanks Institute of Northern Engineering who has led research at McCall Glacier for the past six years. The sample spans the entire depth of the glacier and may cover 200 years of history, he said.

“What we hope is that the climate record will extend back into the Little Ice Age,” said Nolan. “Up until the late 1800s these glaciers were actually growing.”

Since then, arctic glaciers have been shrinking at an increasing rate, he said. “There is no doubt that this is due to a change in climate, but until now we can only guess at the magnitude of that change. Within these cores, we will hopefully capture this shift in climate quantitatively, and we’re glad to have recovered them now before more of this valuable record melts and flows into the Arctic Ocean.”

Ice core samples offer a window into past climate using clues, such as gas bubbles or isotopes of oxygen and hydrogen, locked in the ice when it formed. In addition, debris in the ice, such as layers of volcanic ash and pieces of organic material such as insects, can help scientists draw a timeline through the depth of the glacier.

Because McCall Glacier has been studied extensively since the International Geophysical Year in1957-58, the research history there offers a unique opportunity to compare ice core data with a wealth of related information, such as ice temperature and speed, air temperature and snowfall, and models of how the glacier changes within those parameters. Those comparisons with the modern parts of the ice core can help scientists better understand changes in the older sections, Nolan said.

“Due to its remote location, long-term instrumental climate data here are sparse to nonexistent, so ice cores from this glacier are one of our few means to determine climate variations in this huge region over the past few hundred years,” Nolan said. “We are also quite fortunate and privileged to be granted permission for this work. Research at McCall Glacier predates the formation of the refuge and meshes well with scientific aspects of the refuge’s mission to conduct long-term ecological research.”

A team using a drill from the Ice Core Drilling Service at the University of Wisconsin-Madison pulled the cores from the glacier, one meter at a time, for nearly two weeks straight, despite storms strong enough to break and blow away some of their tents. About midway down, drillers hit an aquifer in the ice, which filled the borehole with water and complicated the drilling effort.

“The drill team did an excellent job of making their tools work in challenging conditions, in particular drilling the last 80 meters of core under water,” Nolan said. “This is a very unusual situation for ice coring, as most cores are taken from summits of cold, dry polar ice sheets not warm, flowing valley glaciers.”

At 150 meters, drillers hit a rock at what the team believes was the bottom of the glacier, based on radar measurements of ice depth.

The ice cores were flown to Fairbanks and are being housed at the Alaska Ice Art Museum until the fall, when glaciologists will return from the field to begin analysis.

The McCall Glacier project is part of UAF’s contribution to research efforts during the fourth International Polar Year. Nolan’s research at McCall Glacier is funded by the National Science Foundation and is part of a cooperative effort, involving 15 other nations, to gain a better understanding of the dynamic response of arctic glaciers to recent climate change. IPY is an international endeavor that is focusing research efforts and public attention on the Earth’s polar regions. Other partners on the field team included the University of Silesia in Poland and the Kitami Institute of Technology in Japan. Additional core analysis will be performed at Ohio State University and the Free University of Brussels in Belgium.

CONTACT: Marmian Grimes, UAF public information officer, at 907-474-7902 or via e-mail at marmian.grimes@uaf.edu.

Marmian Grimes | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>