Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers distinguish waves from mine collapses from other seismic activities

Researchers have devised a technology that can distinguish mine collapses from other seismic activity.

Using the large seismic disturbance associated with the Crandall Canyon mine collapse last August, Lawrence Livermore National Laboratory scientists and colleagues from the Berkeley Seismological Laboratory at UC Berkeley applied a method developed to detect underground nuclear weapons tests to quickly examine the seismic recordings of the event and determine whether that source was most likely from a collapse.

They also found an additional string of secondary surface seismic waves that occurred when the mine collapsed, which are like no other mine collapse events in recent history.

The new research appears in the July 11 edition of the journal Science.

The tragic collapse of a Utah coal mine on Aug. 6 resulted in the deaths of six miners. Ten days later, another collapse killed three rescue workers.

The event was recorded on the local network of seismic stations operated by the U.S. Geological Survey as well as the National Science Foundation Earthscope USArray stations. The collapse registered as a 3.9 magnitude event.

"Our group had already been working on a full seismic waveform matching technique as a means to distinguish between nuclear explosions, earthquakes and collapse events by their seismic signals," said Bill Walter, one of the LLNL researchers.

The new study could help researchers better differentiate underground nuclear tests from earthquakes, mine collapses, mine blasts and other events that generate seismic waves.

UC Berkeley graduate student and LLNL Lawrence Scholar Sean Ford was able to quickly collect the data from the Crandall Canyon seismograms at the time and plug it into the Laboratory algorithm that pointed to a collapse rather than an earthquake.

"These results were posted within a few days after the event and were helpful in resolving the source of the magnitude 3.9 seismic signal," Ford said.

The new technique compares model seismograms to the observed seismograms at local to regional distances (0-1,500 kilometers) at intermediate periods (five to 50 seconds).

Another notable fact about the collapse: The team detected Love waves (also named Q waves - surface seismic waves that cause horizontal shifting of the earth). Typically small in instances such as large mine collapses or hole collapses that sometimes follow nuclear tests, Walter said the Love waves from the Crandall Canyon collapse are "larger than expected for a pure vertical collapse due to gravity."

Though the cause of the Love waves is not fully known, there are several theories, according to Walter.

"One speculative explanation consistent with the data is that the collapse was uneven, with one side closing more than the other," he said. But he said further studies are necessary.

Ford said the Crandall Canyon event was relatively small, magnitude wise. "The fact that we could identify the Crandall Canyon event from its seismic signature gives us confidence that it would be possible to identify even relatively small nuclear explosions using this technique."

"We are excited about the potential of this regional seismic full waveform matching technique and are continuing to develop and test it on other events in others parts of the world to fully understand it," Walter said.

Anne Stark | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Mat baits, hooks and destroys pollutants in water
22.03.2018 | Rice University

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
22.03.2018 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>