Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers distinguish waves from mine collapses from other seismic activities

15.07.2008
Researchers have devised a technology that can distinguish mine collapses from other seismic activity.

Using the large seismic disturbance associated with the Crandall Canyon mine collapse last August, Lawrence Livermore National Laboratory scientists and colleagues from the Berkeley Seismological Laboratory at UC Berkeley applied a method developed to detect underground nuclear weapons tests to quickly examine the seismic recordings of the event and determine whether that source was most likely from a collapse.

They also found an additional string of secondary surface seismic waves that occurred when the mine collapsed, which are like no other mine collapse events in recent history.

The new research appears in the July 11 edition of the journal Science.

The tragic collapse of a Utah coal mine on Aug. 6 resulted in the deaths of six miners. Ten days later, another collapse killed three rescue workers.

The event was recorded on the local network of seismic stations operated by the U.S. Geological Survey as well as the National Science Foundation Earthscope USArray stations. The collapse registered as a 3.9 magnitude event.

"Our group had already been working on a full seismic waveform matching technique as a means to distinguish between nuclear explosions, earthquakes and collapse events by their seismic signals," said Bill Walter, one of the LLNL researchers.

The new study could help researchers better differentiate underground nuclear tests from earthquakes, mine collapses, mine blasts and other events that generate seismic waves.

UC Berkeley graduate student and LLNL Lawrence Scholar Sean Ford was able to quickly collect the data from the Crandall Canyon seismograms at the time and plug it into the Laboratory algorithm that pointed to a collapse rather than an earthquake.

"These results were posted within a few days after the event and were helpful in resolving the source of the magnitude 3.9 seismic signal," Ford said.

The new technique compares model seismograms to the observed seismograms at local to regional distances (0-1,500 kilometers) at intermediate periods (five to 50 seconds).

Another notable fact about the collapse: The team detected Love waves (also named Q waves - surface seismic waves that cause horizontal shifting of the earth). Typically small in instances such as large mine collapses or hole collapses that sometimes follow nuclear tests, Walter said the Love waves from the Crandall Canyon collapse are "larger than expected for a pure vertical collapse due to gravity."

Though the cause of the Love waves is not fully known, there are several theories, according to Walter.

"One speculative explanation consistent with the data is that the collapse was uneven, with one side closing more than the other," he said. But he said further studies are necessary.

Ford said the Crandall Canyon event was relatively small, magnitude wise. "The fact that we could identify the Crandall Canyon event from its seismic signature gives us confidence that it would be possible to identify even relatively small nuclear explosions using this technique."

"We are excited about the potential of this regional seismic full waveform matching technique and are continuing to develop and test it on other events in others parts of the world to fully understand it," Walter said.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>