Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite View of Cloud Tops Might Warn of Storms

10.07.2008
Scientists at The University of Alabama in Huntsville have developed a new computer program to provide short-term warnings for "pop up" thunderstorms. The system has been used in North Alabama for several years, but is now finding use in other parts of the U.S. and the world.

For three years, a new way to use data collected by NOAA weather satellites has been giving North Alabama short-term warnings of "pop-up" thunderstorms.

Developed by scientists at The University of Alabama in Huntsville, this new computer program is now spreading to other parts of the U.S. and the world. Later this summer a version of the UAHuntsville weather program will begin forecasting storms throughout Central America, Southern Mexico and the Dominican Republic.

The UAHuntsville Satellite Convection AnalySis & Tracking System (SATCASTS) monitors cumulus clouds as they develop, move and grow through time, according to the person who brainstormed the idea behind the program, Dr. John Mecikalski, an assistant professor of atmospheric science at UAHuntsville.

The program uses data from NOAA’s GOES weather satellites to provide 15-minute to one hour warnings of local thunderstorms. This is the first time forecasters anywhere have had a tool to forecast storms that develop locally. This differs from Doppler radar, which only tracks rain after it starts to fall.

"The radar tells you what's happening, but not what's going to happen," said Wayne MacKenzie, a research associate in UAHuntsville's Earth System Science Center and a member of the SATCASTS development team.

Operated by UAHuntsville scientists for the National Weather Service forecast office in Huntsville for about three years, SATCASTS has been accurate in its storm forecasts between 65 and 75 percent of the time. It has successfully identified hazards generated by thunderstorms, including lightning, hail, high wind, flash floods and turbulence.

Mecikalski got the idea for SATCASTS in 2001, when he was affiliated with NOAA’s Cooperative Institute for Meteorological Studies. He was looking for a way to determine which of the thousands of cumulus clouds present on any given summer afternoon will become thunderstorms. (One percent or less of clouds develop into rain clouds.) He has continued his research since joining the faculty at UAHuntsville in January 2004.

Using data from the GOES visible and infrared sensors, SATCASTS tracks changes in both cloud temperature (height) and water vapor. This data is updated every 15 minutes.

The UAHuntsville team has determined that one of the most important factors in predicting thunderstorms is temperature change. If the top of a cloud cools by 4 C (about 7.2 degrees Fahrenheit) or more in 15 minutes, that means the cloud is growing quickly and there is a growing probability of rain beginning within 30 minutes to an hour. A 4 C drop in temperature typically means a cloud top has climbed between 1/4 to 1/3 of a kilometer.

Based on its success in the Huntsville forecast office, scientists at UAHuntsville are working with the National Weather Service to transition SATCASTS into the storm prediction systems in forecast offices in Birmingham, AL, and Nashville, TN, as well as both Melbourne and Miami, FL.

The UAHuntsville team is also working with NASA and the Federal Aviation Administration (FAA) to test SATCASTS' possible utility in aviation and air traffic control. The system is being tested at the FAA’s New York City air traffic control center. If successful, SATCASTS might be used worldwide to warn pilots of storms, turbulence and other weather threats before they occur.

Other organizations evaluating the operational implementation of the SATCASTS algorithm include the European Meteorological Satellite agency and the South African Weather Service. Discussions are also under way to bring SATCASTS capabilities to East Africa.

While SATCASTS joins a sophisticated and extensive network of weather monitoring systems in the U.S., it is expected to have special value in regions where storm forecasting and monitoring have been limited or non-existent. The system is relatively inexpensive to install and operate, since it uses freely distributed weather data from existing satellite sensors.

NOAA-funded research at UAHuntsville will focus on expanding SATCASTS' capabilities. In areas where Doppler radar networks do not exist, SATCASTS might be used in the future to track frontal storm systems and provide severe weather warnings that are not presently available, Mecikalski said.

"This makes SATCASTS and satellite-based rainfall predictions very relevant in many developing countries, when ground-based radar is absent but high quality satellite data are in place."

The UAHuntsville SATCASTS team includes Mecikalski, two other scientists and three graduate students. The project has been supported by more than $1 million in funding from NOAA, NASA and the FAA.

Research on improving SATCASTS is ongoing and is expected to continue for at least five years. New areas of research include 30-to-90-minute lightning and flash flood forecasts.

The UAHuntsville team is also working on a next generation SATCASTS, which will take advantage of the improved sensing systems that will be available when NOAA launches it GOES-R series of satellites beginning in 2016. Sensors on those satellites will collect data in more channels, more often and at higher resolution.

Dr. John Mecikalski, (256) 961-7046
john.mecikalski@nsstc.uah.edu
Wayne MacKenzie, (256) 961-7779
wayne.mackenzie@uah.edu
Phillip Gentry, (256) 824-6420
gentryp@uah.edu

Dr. John Mecikalski | Newswise Science News
Further information:
http://www.uah.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>