Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover Magma and Carbon Dioxide Combine to Make ‘Soda-Pop’ Eruption

10.07.2008
Through an autopsy of an ancient Scandinavian mountain chain, a team of Texas Tech University geologists found that carbon dioxide can create explosive eruptions when magma encounters calcium carbonate-based rocks.

This discovery overturns a longtime belief by geologists, who thought that carbon dioxide was incapable of dissolving in magma, said Calvin Barnes, professor of geosciences and lead investigator.

Through a grant from the National Science Foundation, Barnes, Aaron Yoshinobu, associate professor of geosciences, and doctoral student Yujia Li, discovered that carbon dioxide is released when magma interacts with rocks such as limestone and marble. The carbon dioxide, when combined with the magma, can create more powerful eruptions.

“The main topic of our research involves magma’s interaction with rocks that release carbon dioxide,” he said. “Hot magma melts the calcium carbonate-rich rock, and it mixes with magma much like adding an ingredient to something you are cooking to change the consistency or flavor. This forms bubbles and increases the volume of the magma. In turn, it must be pushed out through an eruption in a manner similar to modern explosive volcanoes in Italy, including Mount Vesuvius.”

The Texas Tech geologists’ research is in collaboration with colleagues at the University of Trondheim, the Geological Survey of Norway, and the University of Wyoming. So far their research has yielded three papers in journals such as the Norwegian Journal of Geology and Lithos. Several more are pending.

Because searing hot temperatures prevent scientists from observing these reactions directly, Barnes studied samples from the ancient Caledonian fold belt in Norway – Scandinavia’s equivalent of the Appalachian Mountains of North America.

Erosion has exposed the layers of magma that solidified within earth’s crust when the Caledonian fold belt was formed, Barnes said. Through chemical analysis, he and Li confirmed that carbon dioxide not only is released when magma encounters calcium carbonated-based rocks, but also that a great deal of calcium dissolves in the magma and equal amounts of carbon dioxide are released. Just as carbon dioxide causes a soft drink to fizz, this caused the magma to bubble and expand until it reached the point of eruption.

Barnes’ research coupled with new experiments done by researchers in France and Italy has shown that the contamination of magma by carbonate not only is possible, but also it is capable of explaining many of the unusual characteristics of modern volcanoes such as Vesuvius, an active volcano located east of Naples, Italy, and the Alban Hills, located southeast of Rome.

He said that both the Alban Hills and Vesuvius produce unusually high amounts of carbon dioxide during eruptions because the crust beneath these volcanoes contains calcium carbonate-based limestone rocks.

Through their research, they can better understand eruptions and calculate the amounts of carbon dioxide released during volcanic activity. Understanding these concepts is important from a public safety standpoint since cities and towns are close by active volcanoes.

“It’s useful because a volcanic eruption gives you a snapshot of what is happening beneath Earth’s surface,” Barnes said.

CONTACT: Calvin Barnes, professor, Department of Geosciences, Texas Tech University, (806) 742-3106, or cal.barnes@ttu.edu.

Jessica Benham | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>