Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover Magma and Carbon Dioxide Combine to Make ‘Soda-Pop’ Eruption

10.07.2008
Through an autopsy of an ancient Scandinavian mountain chain, a team of Texas Tech University geologists found that carbon dioxide can create explosive eruptions when magma encounters calcium carbonate-based rocks.

This discovery overturns a longtime belief by geologists, who thought that carbon dioxide was incapable of dissolving in magma, said Calvin Barnes, professor of geosciences and lead investigator.

Through a grant from the National Science Foundation, Barnes, Aaron Yoshinobu, associate professor of geosciences, and doctoral student Yujia Li, discovered that carbon dioxide is released when magma interacts with rocks such as limestone and marble. The carbon dioxide, when combined with the magma, can create more powerful eruptions.

“The main topic of our research involves magma’s interaction with rocks that release carbon dioxide,” he said. “Hot magma melts the calcium carbonate-rich rock, and it mixes with magma much like adding an ingredient to something you are cooking to change the consistency or flavor. This forms bubbles and increases the volume of the magma. In turn, it must be pushed out through an eruption in a manner similar to modern explosive volcanoes in Italy, including Mount Vesuvius.”

The Texas Tech geologists’ research is in collaboration with colleagues at the University of Trondheim, the Geological Survey of Norway, and the University of Wyoming. So far their research has yielded three papers in journals such as the Norwegian Journal of Geology and Lithos. Several more are pending.

Because searing hot temperatures prevent scientists from observing these reactions directly, Barnes studied samples from the ancient Caledonian fold belt in Norway – Scandinavia’s equivalent of the Appalachian Mountains of North America.

Erosion has exposed the layers of magma that solidified within earth’s crust when the Caledonian fold belt was formed, Barnes said. Through chemical analysis, he and Li confirmed that carbon dioxide not only is released when magma encounters calcium carbonated-based rocks, but also that a great deal of calcium dissolves in the magma and equal amounts of carbon dioxide are released. Just as carbon dioxide causes a soft drink to fizz, this caused the magma to bubble and expand until it reached the point of eruption.

Barnes’ research coupled with new experiments done by researchers in France and Italy has shown that the contamination of magma by carbonate not only is possible, but also it is capable of explaining many of the unusual characteristics of modern volcanoes such as Vesuvius, an active volcano located east of Naples, Italy, and the Alban Hills, located southeast of Rome.

He said that both the Alban Hills and Vesuvius produce unusually high amounts of carbon dioxide during eruptions because the crust beneath these volcanoes contains calcium carbonate-based limestone rocks.

Through their research, they can better understand eruptions and calculate the amounts of carbon dioxide released during volcanic activity. Understanding these concepts is important from a public safety standpoint since cities and towns are close by active volcanoes.

“It’s useful because a volcanic eruption gives you a snapshot of what is happening beneath Earth’s surface,” Barnes said.

CONTACT: Calvin Barnes, professor, Department of Geosciences, Texas Tech University, (806) 742-3106, or cal.barnes@ttu.edu.

Jessica Benham | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>