Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Discover Magma and Carbon Dioxide Combine to Make ‘Soda-Pop’ Eruption

10.07.2008
Through an autopsy of an ancient Scandinavian mountain chain, a team of Texas Tech University geologists found that carbon dioxide can create explosive eruptions when magma encounters calcium carbonate-based rocks.

This discovery overturns a longtime belief by geologists, who thought that carbon dioxide was incapable of dissolving in magma, said Calvin Barnes, professor of geosciences and lead investigator.

Through a grant from the National Science Foundation, Barnes, Aaron Yoshinobu, associate professor of geosciences, and doctoral student Yujia Li, discovered that carbon dioxide is released when magma interacts with rocks such as limestone and marble. The carbon dioxide, when combined with the magma, can create more powerful eruptions.

“The main topic of our research involves magma’s interaction with rocks that release carbon dioxide,” he said. “Hot magma melts the calcium carbonate-rich rock, and it mixes with magma much like adding an ingredient to something you are cooking to change the consistency or flavor. This forms bubbles and increases the volume of the magma. In turn, it must be pushed out through an eruption in a manner similar to modern explosive volcanoes in Italy, including Mount Vesuvius.”

The Texas Tech geologists’ research is in collaboration with colleagues at the University of Trondheim, the Geological Survey of Norway, and the University of Wyoming. So far their research has yielded three papers in journals such as the Norwegian Journal of Geology and Lithos. Several more are pending.

Because searing hot temperatures prevent scientists from observing these reactions directly, Barnes studied samples from the ancient Caledonian fold belt in Norway – Scandinavia’s equivalent of the Appalachian Mountains of North America.

Erosion has exposed the layers of magma that solidified within earth’s crust when the Caledonian fold belt was formed, Barnes said. Through chemical analysis, he and Li confirmed that carbon dioxide not only is released when magma encounters calcium carbonated-based rocks, but also that a great deal of calcium dissolves in the magma and equal amounts of carbon dioxide are released. Just as carbon dioxide causes a soft drink to fizz, this caused the magma to bubble and expand until it reached the point of eruption.

Barnes’ research coupled with new experiments done by researchers in France and Italy has shown that the contamination of magma by carbonate not only is possible, but also it is capable of explaining many of the unusual characteristics of modern volcanoes such as Vesuvius, an active volcano located east of Naples, Italy, and the Alban Hills, located southeast of Rome.

He said that both the Alban Hills and Vesuvius produce unusually high amounts of carbon dioxide during eruptions because the crust beneath these volcanoes contains calcium carbonate-based limestone rocks.

Through their research, they can better understand eruptions and calculate the amounts of carbon dioxide released during volcanic activity. Understanding these concepts is important from a public safety standpoint since cities and towns are close by active volcanoes.

“It’s useful because a volcanic eruption gives you a snapshot of what is happening beneath Earth’s surface,” Barnes said.

CONTACT: Calvin Barnes, professor, Department of Geosciences, Texas Tech University, (806) 742-3106, or cal.barnes@ttu.edu.

Jessica Benham | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>