Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unravelling the "inconvenient truth" of glacier movement

Predicting climate change depends on many factors not properly included in current forecasting models, such as how the major polar ice caps will move in the event of melting around their edges.

This in turn requires greater understanding of the processes at work when ice is under stress, influencing how it flows and moves. The immediate objective is to model the flow of ice sheets and glaciers more accurately, leading in turn to better future predictions of global ice cover for use in climate modeling and forecasting.

Progress and future research objectives in the field were discussed at a recent workshop organized by the European Science Foundation (ESF), bringing together glaciologists, geologists, and experts in the processes of cracking under stress in other crystalline materials, notably metals and rocks.

The essential problem is that processes at different scales starting from the molecular and going up to whole ice sheets need to be integrated in order to develop models capable of accurate predictions. While the processes at the molecular level inside individual ice crystals are quite well understood, too little attention has been paid to the properties of ice at the scale of each grain, comprising organized groups of crystals. All crystalline solids, including metals, are comprised of grains, which are about 1 to 3 cms across in the case of ice. The grain is fundamental for ice movement, because of the strong mechanical anisotropy (irregularity) of individual ice grains. "These processes are much less understood, and one could say they are more 'messy'," said Paul Bons, who co-chaired the ESF workshop. "The challenge ahead is to convert the insight gained on the effects of grain-scale processes into improved rheological models." Rheology is the study of how materials such as ice or rock flow when forces are applied to them.

As Bons noted, such knowledge of grain-level interactions is needed not just to construct better models of ice caps, but also for understanding processes inside the earth's mantle, which could help predict earthquakes and volcanoes. "The interesting thing here is actually the similarity between all these compounds, not the differences," said Bons, himself a geologist. "Essentially the same processes occur in ice, minerals and metals."

The differences lie just in the balance between these processes, with interactions between crystals within grains being more significant in ice than metals or rocks. But as was noted by Sergio Faria, another co-chair, it is important to resolve these issues, since current models can be highly inaccurate in predicting ice flows, as has been found by analysing ice cores drilled into glaciers. "The microstructures observed in ice core samples indicate the deformation mechanisms active in an ice sheet," said Faria. "Depending upon the sort of active mechanisms, the flow of an ice sheet may vary by orders of magnitude. Therefore a precise understanding of ice microstructures - and consequently of active deformation mechanisms - is essential to reduce the current uncertainty in ice sheet flow models."

As a result of recent findings, the current approach to ice flow analysis, the so-called 3-layer model, will have to be revised, according to Sepp Kipfstuhl, the ESF conference's third co-convenor. "It was interesting to see at the workshop that the study of microstructures challenges standard models for polar ice, especially the classical 3-layer model and the standard flow law of ice. This is an 'inconvenient truth' that complicates large-scale ice flow models, and hence impacts on climate modeling," said Kipfstuhl."

As in all branches of science, this inconvenient truth must be faced head on in order to solve the problem of accurate ice flow prediction, which has become all the more pressing in the light of current concerned over the impact of climate change.

The workshop Modelling And Interpretation Of Ice Microstructures was held April 2008 in Göttingen, Germany. Each year, ESF supports approximately 50 Exploratory Workshops across all scientific domains. These small, interactive group sessions are aimed at opening up new directions in research to explore new fields with a potential impact on developments in science.

Thomas Lau | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>