Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire Under the Ice

26.06.2008
International expedition discovers gigantic volcanic eruption in the Arctic Ocean

An international team of researchers was able to provide evidence of explosive volcanism in the deeps of the ice-covered Arctic Ocean for the first time.

Researchers from an expedition to the Gakkel Ridge, led by the American Woods Hole Oceanographic Institution (WHOI), report in the current issue of the journal Nature that they discovered, with a specially developed camera, extensive layers of volcanic ash on the seafloor, which indicates a gigantic volcanic eruption.

"Explosive volcanic eruptions on land are nothing unusual and pose a great threat for whole areas," explains Dr Vera Schlindwein of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association. She participated in the expedition as a geophysicist and has been, together with her team, examining the earthquake activity of the Arctic Ocean for many years.

"The Vesuvius erupted in 79 AD and buried thriving Pompeii under a layer of ash and pumice. Far away in the Arctic Ocean, at 85° N 85° E, a similarly violent volcanic eruption happened almost undetected in 1999 - in this case, however, under a water layer of 4,000 m thickness." So far, researchers have assumed that explosive volcanism cannot happen in water depths exceeding 3 kilometres because of high ambient pressure.

"These are the first pyroclastic deposits we've ever found in such deep water, at oppressive pressures that inhibit the formation of steam, and many people thought this was not possible," says Robert Reves-Sohn, staff member of the WHOI and lead scientist of the expedition carried out on the Swedish icebreaker Oden in 2007.

A major part of Earth's volcanism happens at the so-called mid-ocean ridges and, therefore, completely undetected on the seafloor. There, the continental plates drift apart; liquid magma intrudes into the gap and constantly forms new seafloor through countless volcanic eruptions. Accompanied by smaller earthquakes, which go unregistered on land, lava flows onto the seafloor. These unspectacular eruptions usually last for only a few days or weeks.

The Gakkel Ridge in the Arctic Ocean spreads so slowly at 6-14 mm/year, that current theories considered volcanism unlikely - until a series of 300 strong earthquakes over a period of eight months indicated an eruption at 85° N 85° E in 4 kilometres water depth in 1999. Scientists of the Alfred Wegener Institute became aware of this earthquake swarm and reported about its unusual properties in the periodical EOS in the year 2000.

Vera Schlindwein and her junior research group are closely examining the earthquake activity of these ultraslow-spreading ridges since 2006. "The Gakkel Ridge is covered with sea-ice the whole year. To detect little earthquakes, which accompany geological processes, we have to deploy our seismometers on drifting ice floes." This unusual measuring method proved highly successful: in a first test in the summer 2001 - during the "Arctic Mid-Ocean Ridge Expedition (AMORE)" on the research icebreaker Polarstern - the seismometers recorded explosive sounds by the minute, which originated from the seafloor of the volcanic region.

"This was a rare and random recording of a submarine eruption in close proximity," says Schlindwein. "I postulated in 2001 that the volcano is still active. However, it seemed highly improbable to me that the recorded sounds originated from an explosive volcanic eruption, because of the water depth of 4 kilometres."

The scientist regards the matter differently after her participation in the Oden-Expedition 2007, during which systematic earthquake measurements were taken by Schlindwein's team in the active volcanic region: "Our endeavours now concentrate on reconstructing and understanding the explosive volcanic episodes from 1999 and 2001 by means of the accompanying earthquakes. We want to know, which geological features led to a gas pressure so high that it even enabled an explosive eruption in these water depths." Like Robert Reves-Sohn, she presumes that explosive eruptions are far more common in the scarcely explored ultraslow-spreading ridges than presumed so far.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and makes available to international science important infrastructure, e.g. the research icebreaker "Polarstern" and research stations in the Arctic and Antarctic. AWI is one of 15 research centres within the Helmholtz-Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>