Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Join Science Team to Chase and Capture Tornado Data

25.06.2008
Their job is to take measurements of a tornado’s rear flank downdraft.

And yes, said several Iowa State University students who have joined Tim Samaras, a Colorado-based researcher who was named a National Geographic Society “Emerging Explorer” in 2005 and is a principal engineer for Applied Research Associates Inc., some adrenaline is involved. But that’s not why they’re driving instrument-carrying cars a mile or so to the south or east of the storms that have regularly blown across tornado alley this spring and summer.

They’re driving into rain, wind, lightning and hail to chase data: temperature, dew point, barometric pressure, wind speed, wind direction and exact location. The students’ measurements will be analyzed by scientists trying to understand more about how tornadoes are formed.

“We’re measuring air circulation near the tornado,” said Chris Karstens, an Iowa State graduate student in meteorology from Atlantic. “There are questions about that air’s role in forming tornadoes and in tornado longevity. We think it has a central role in tornadoes.”

Karstens, who spent five days on the road with Samaras’ crew last month, said he saw and chased about 12 tornadoes. Most were weak storms. But he saw a few that were a mile wide or bigger.

Bill Gallus, an Iowa State professor of geological and atmospheric sciences, said this is the third year Iowa State students have done field research with Samaras. They’re generally on the road throughout May and June. Students volunteer to be part of Samaras’ “TWISTEX” (Tactical Weather Instrumented Sampling in/near Tornadoes/Thunderstorms Experiment, http://twistex.org). Those selected are usually experienced storm chasers and have done well in forecasting courses. The students are not paid, but their field expenses are covered. The students’ research is part of an Iowa State project supported by the National Oceanic and Atmospheric Administration and led by Partha Sarkar, an Iowa State professor of aerospace engineering and director of the Wind Simulation and Testing Laboratory.

The idea is to send students out to the field to learn more about how storms develop and evolve, Gallus said. They also learn about working with mobile instruments and taking measurements.

“They come back and they’re so excited about the data they can analyze,” Gallus said.

They’re also excited about the stories they can tell.

Brandon Fisel, a graduate student in meteorology from Hebron, Ind., remembers May 29 near Osborne, Kan. That’s when Samaras dropped three probes containing cameras and instruments in the path of an oncoming tornado. The probes took a direct hit and could yield the first measurements of wind speed at the bottom of a tornado.

W Scott Lincoln, a graduate student in environmental science from Alleman, likes to talk about the day he drove through a tornado that was just beginning to form. He didn’t know what was happening at the time, but the car’s weather instruments later confirmed the storm had begun to circulate over his head.

Jayson Prentice, a senior meteorology student from Terril, says his time with Samaras’ experiment can help him build his research resume for graduate school.

And what about the chase? Does it get scary when the storms kick up, as they have all too often this tornado season?

Well, said Karstens, most of the experiment “is just like you’re on a very long road trip” because the researchers drive hundreds of miles from storm system to storm system.

Prentice remembers the intensity of “a few moments when we were taking near-tornado windfall readings within a mile or a couple of miles of tornadoes. One tornado was over a mile wide.”

But, said Fisel, “the adrenaline is kind of going and you don’t feel scared at all.”

Besides, said Lincoln, the researchers aren’t “yahoo chasers going out for thrills.” They’re calling in reports to the National Weather Service. They’re recording as much data as they can. And they’re working to help scientists develop a better understanding of the deadly and destructive storms.

Bill Gallus | newswise
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>