Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Students Join Science Team to Chase and Capture Tornado Data

Their job is to take measurements of a tornado’s rear flank downdraft.

And yes, said several Iowa State University students who have joined Tim Samaras, a Colorado-based researcher who was named a National Geographic Society “Emerging Explorer” in 2005 and is a principal engineer for Applied Research Associates Inc., some adrenaline is involved. But that’s not why they’re driving instrument-carrying cars a mile or so to the south or east of the storms that have regularly blown across tornado alley this spring and summer.

They’re driving into rain, wind, lightning and hail to chase data: temperature, dew point, barometric pressure, wind speed, wind direction and exact location. The students’ measurements will be analyzed by scientists trying to understand more about how tornadoes are formed.

“We’re measuring air circulation near the tornado,” said Chris Karstens, an Iowa State graduate student in meteorology from Atlantic. “There are questions about that air’s role in forming tornadoes and in tornado longevity. We think it has a central role in tornadoes.”

Karstens, who spent five days on the road with Samaras’ crew last month, said he saw and chased about 12 tornadoes. Most were weak storms. But he saw a few that were a mile wide or bigger.

Bill Gallus, an Iowa State professor of geological and atmospheric sciences, said this is the third year Iowa State students have done field research with Samaras. They’re generally on the road throughout May and June. Students volunteer to be part of Samaras’ “TWISTEX” (Tactical Weather Instrumented Sampling in/near Tornadoes/Thunderstorms Experiment, Those selected are usually experienced storm chasers and have done well in forecasting courses. The students are not paid, but their field expenses are covered. The students’ research is part of an Iowa State project supported by the National Oceanic and Atmospheric Administration and led by Partha Sarkar, an Iowa State professor of aerospace engineering and director of the Wind Simulation and Testing Laboratory.

The idea is to send students out to the field to learn more about how storms develop and evolve, Gallus said. They also learn about working with mobile instruments and taking measurements.

“They come back and they’re so excited about the data they can analyze,” Gallus said.

They’re also excited about the stories they can tell.

Brandon Fisel, a graduate student in meteorology from Hebron, Ind., remembers May 29 near Osborne, Kan. That’s when Samaras dropped three probes containing cameras and instruments in the path of an oncoming tornado. The probes took a direct hit and could yield the first measurements of wind speed at the bottom of a tornado.

W Scott Lincoln, a graduate student in environmental science from Alleman, likes to talk about the day he drove through a tornado that was just beginning to form. He didn’t know what was happening at the time, but the car’s weather instruments later confirmed the storm had begun to circulate over his head.

Jayson Prentice, a senior meteorology student from Terril, says his time with Samaras’ experiment can help him build his research resume for graduate school.

And what about the chase? Does it get scary when the storms kick up, as they have all too often this tornado season?

Well, said Karstens, most of the experiment “is just like you’re on a very long road trip” because the researchers drive hundreds of miles from storm system to storm system.

Prentice remembers the intensity of “a few moments when we were taking near-tornado windfall readings within a mile or a couple of miles of tornadoes. One tornado was over a mile wide.”

But, said Fisel, “the adrenaline is kind of going and you don’t feel scared at all.”

Besides, said Lincoln, the researchers aren’t “yahoo chasers going out for thrills.” They’re calling in reports to the National Weather Service. They’re recording as much data as they can. And they’re working to help scientists develop a better understanding of the deadly and destructive storms.

Bill Gallus | newswise
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>