Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Travelers, Astronomers Stand to Benefit from Research on Atmospheric Turbulence

23.06.2008
Anyone who frequently travels by airplane has likely experienced clear-air turbulence. It’s the kind of jarring turbulence that can quickly turn a smooth flight into a bumpy ride, often causing aircraft to drop anywhere from a few feet to thousands of feet within seconds.

A recently awarded $716,000 grant from the U.S. Air Force Office of Scientific Research will fund research by Arizona State University professor Alex Mahalov aimed at reducing those anxious moments for air travelers.

Mahalov also will study another kind of atmospheric turbulence that poses problems for astronomers.

Optical turbulence results from the amplitude and phase fluctuations in electromagnetic waves propagating through the atmosphere, which is what causes stars to appear to “twinkle.” It also is a major source of telescope image degradation, making it difficult for astronomers to get clear views into space.

Mahalov is a professor in the Department of Mathematics and Statistics in ASU’s College of Liberal Arts and Science, with a joint appointment in the Department of Mechanical and Aerospace Engineering in the university’s Ira A. Fulton School of Engineering.

Working in the engineering school’s Center for Environmental Fluid Dynamics, Mahalov will use funding from the grant over a three-year period to improve techniques for identifying, forecasting and detecting areas of clear-air turbulence and modeling of optical turbulence under extreme environmental conditions.

He will collaborate with experts at the National Center for Atmospheric Research in Boulder, Colo., on improving the ability of numerical codes to forecast clear-air turbulence, particularly in areas of mountainous terrain.

“Improved real-time predictability and forecasting of high-impact, clear-air turbulence events will minimize the potential for costly devastation to human life and loss of business assets,” Mahalov says.

He also will work with astronomers at the observatories at Mauna Kea in Hawaii on using adaptive optics to reduce telescope image degradation caused by atmospheric optical turbulence.

Mahalov works with ASU’s high-performance computing group on creating real-time, high-resolution environmental forecasts. When researchers study multi-scale dynamics over a relatively limited geographic area, he explains, they need to use high-resolution models to produce accurate predictions.

Mahalov will use the facilities of the engineering school’s High Performance Computing Initiative to address complex research problems, from identifying the optical effects of the jet stream above astronomical observatories to understanding the effects of environmental transport on global and regional scales. Environmental transport involves the movement of chemical and particulate matter – such as ozone and other pollutants – as they are released into the atmosphere.

Mahalov has had almost 100 peer-reviewed research articles published. In 2004 he received a High Performance Computing Challenge grant from the Department of Defense High Performance Computing Modernization Program. The project funded by the grant was the subject of a featured presentation at the annual conference of the International Society for Optical Engineering in San Jose, Calif., in January 2008.

Mahalov often collaborates with top scholars in his field from around the world, including those with the European Center for Medium Range Weather Forecasting in Reading, England and the Laboratoire de Meteorologie Dynamique at the University of Paris.

SOURCE:
Alex Mahalov, alex.mahalov@asu.edu
Professor
Mathematics and Statistics
Mechanical and Aerospace Engineering
(480) 965-0408
Center for Environmental Fluid Dynamics
(480) 965-5602

Joe Kullman | newswise
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>