Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field Project Seeks Clues to Climate Change in Remote Atmospheric Region

16.06.2008
Scientists are deploying an advanced research aircraft to study a region of the atmosphere that influences climate change by affecting Earth's thermal balance.

Findings from the project, based at the National Center for Atmospheric Research (NCAR), will be used by researchers worldwide to improve computer models of global climate in preparation for the next report by the Intergovernmental Panel on Climate Change (IPCC).

The project, which runs from April to June, is known as START 08 (Stratosphere-Troposphere Analyses of Regional Transport). It focuses on the tropopause, which is the boundary between the troposphere (lower atmosphere) and the stratosphere. Scientists are increasingly interested in the tropopause, because of both its importance in the global climate system and because the buildup of greenhouse gases has altered this atmospheric region in ways that are not yet fully understood.

"This region of the atmosphere is a weak link in climate research," explains NCAR scientist Laura Pan, a principal investigator on the project. "In order to understand climate change, we need to have accurate computer models of the planet. In order to have accurate models, we need to understand what's going on in the tropopause."

START is a collaborative effort involving the University of Miami, Texas A&M University, the University of Colorado, Harvard University, and the National Oceanic and Atmospheric Administration. Funding for the project comes from the National Science Foundation, which is NCAR's sponsor, and from NOAA.

----High-altitude missions----

The research team is deploying the NSF/NCAR Gulfstream-V, a modified jet aircraft with high-altitude capabilities that will fly about a dozen missions across much of North America, ranging up to about 47,000 feet high. The flight paths will take the jet's cutting-edge sensors through the top of the troposphere, which is the lowest layer of the atmosphere, and into the stratosphere. Focusing on the tropopause, the boundary between these two layers, scientists will take samples of air to determine the movements and concentrations of a number of gases. One of their goals is to learn more about water vapor and ozone, which act as potent greenhouse gases by trapping thermal radiation in the atmosphere, thereby warming the planet.

The altitude of the tropopause varies from 32,000 to 56,000 feet, with the highest part lying above the tropics. It is challenging territory for scientists because it is too high to observe with most ground-based instruments or most aircraft, and too low for satellites to view with great detail. Moreover, its altitude has changed in recent years as a result of global warming. As Earth's tropical regions have expanded, the highest part of the tropopause has extended farther north and south.

These changes are setting off a chain reaction that affects both weather patterns and long-term global climate. The research team wants to determine how weather patterns stir up chemicals near the tropopause and, in turn, how the tropopause's changing chemical composition influences global climate, including the location of the jet stream.

"We want to collect data that will help map out the chemical composition of this dynamic boundary region," says Elliot Atlas, a principal investigator on the project and professor of marine and atmospheric chemistry at the University of Miami. "This is a complex area, where naturally occurring gases and particles mix with pollutants from human activities in ways that can ultimately affect the weather and climate of our planet."

-----Critical data for the IPCC -----

Over the next two years, climate scientists will use observations from START and other sources to adjust computer models that simulate Earth's climate. These models will be used for the next round of IPCC reports, which are likely to be issued in about 2012. The IPCC, a recipient of the Nobel Peace Prize, operates under the auspices of the United Nations Environment Programme and the World Meteorological Organization.

"Understanding the tropopause region is particularly challenging because it involves interactions of winds and atmospheric motion with chemistry, clouds, and solar radiation," says Kenneth Bowman, a principal investigator on the project and professor of atmospheric science at Texas A&M University. "Properly representing this part of the atmosphere in global climate models requires getting all of these complex components correct. The Gulfstream-V aircraft allows us to directly observe many of these processes in place, providing a level of detail that cannot be matched by ground-based or satellite observations."

David Hosansky | newswise
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>