Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm that parts of earliest genetic material may have come from the stars

13.06.2008
Scientists have confirmed for the first time that an important component of early genetic material which has been found in meteorite fragments is extraterrestrial in origin, in a paper published on 15 June 2008.

The finding suggests that parts of the raw materials to make the first molecules of DNA and RNA may have come from the stars.

The scientists, from Europe and the USA, say that their research, published in the journal Earth and Planetary Science Letters, provides evidence that life’s raw materials came from sources beyond the Earth.

The materials they have found include the molecules uracil and xanthine, which are precursors to the molecules that make up DNA and RNA, and are known as nucleobases.

The team discovered the molecules in rock fragments of the Murchison meteorite, which crashed in Australia in 1969.

They tested the meteorite material to determine whether the molecules came from the solar system or were a result of contamination when the meteorite landed on Earth.

The analysis shows that the nucleobases contain a heavy form of carbon which could only have been formed in space. Materials formed on Earth consist of a lighter variety of carbon.

Lead author Dr Zita Martins, of the Department of Earth Science and Engineering at Imperial College London, says that the research may provide another piece of evidence explaining the evolution of early life. She says:

“We believe early life may have adopted nucleobases from meteoritic fragments for use in genetic coding which enabled them to pass on their successful features to subsequent generations.”

Between 3.8 to 4.5 billion years ago large numbers of rocks similar to the Murchison meteorite rained down on Earth at the time when primitive life was forming. The heavy bombardment would have dropped large amounts of meteorite material to the surface on planets like Earth and Mars.

Co-author Professor Mark Sephton, also of Imperial’s Department of Earth Science and Engineering, believes this research is an important step in understanding how early life might have evolved. He added:

“Because meteorites represent left over materials from the formation of the solar system, the key components for life -- including nucleobases -- could be widespread in the cosmos. As more and more of life’s raw materials are discovered in objects from space, the possibility of life springing forth wherever the right chemistry is present becomes more likely.”

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk/people/z.martins
http://dx.doi.org/10.1016/j.epsl.2008.03.026
http://fileexchange.imperial.ac.uk/files/8e29fc9233f/Martins%20et%20al%202008.pdf

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>