Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists confirm that parts of earliest genetic material may have come from the stars

Scientists have confirmed for the first time that an important component of early genetic material which has been found in meteorite fragments is extraterrestrial in origin, in a paper published on 15 June 2008.

The finding suggests that parts of the raw materials to make the first molecules of DNA and RNA may have come from the stars.

The scientists, from Europe and the USA, say that their research, published in the journal Earth and Planetary Science Letters, provides evidence that life’s raw materials came from sources beyond the Earth.

The materials they have found include the molecules uracil and xanthine, which are precursors to the molecules that make up DNA and RNA, and are known as nucleobases.

The team discovered the molecules in rock fragments of the Murchison meteorite, which crashed in Australia in 1969.

They tested the meteorite material to determine whether the molecules came from the solar system or were a result of contamination when the meteorite landed on Earth.

The analysis shows that the nucleobases contain a heavy form of carbon which could only have been formed in space. Materials formed on Earth consist of a lighter variety of carbon.

Lead author Dr Zita Martins, of the Department of Earth Science and Engineering at Imperial College London, says that the research may provide another piece of evidence explaining the evolution of early life. She says:

“We believe early life may have adopted nucleobases from meteoritic fragments for use in genetic coding which enabled them to pass on their successful features to subsequent generations.”

Between 3.8 to 4.5 billion years ago large numbers of rocks similar to the Murchison meteorite rained down on Earth at the time when primitive life was forming. The heavy bombardment would have dropped large amounts of meteorite material to the surface on planets like Earth and Mars.

Co-author Professor Mark Sephton, also of Imperial’s Department of Earth Science and Engineering, believes this research is an important step in understanding how early life might have evolved. He added:

“Because meteorites represent left over materials from the formation of the solar system, the key components for life -- including nucleobases -- could be widespread in the cosmos. As more and more of life’s raw materials are discovered in objects from space, the possibility of life springing forth wherever the right chemistry is present becomes more likely.”

Colin Smith | alfa
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>