Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Has Global Warming Research Misinterpreted Cloud Behavior?

When researchers observe natural changes in clouds and temperature, they have assumed that temperature change caused the clouds to change, and not the other way around. This can lead to overestimates of how sensitive Earth's climate is to greenhouse gas emissions.

Climate experts agree that the seriousness of manmade global warming depends greatly upon how clouds in the climate system respond to the small warming tendency from the extra carbon dioxide mankind produces.

To figure that out, climate researchers usually examine natural, year-to-year fluctuations in clouds and temperature to estimate how clouds will respond to humanity’s production of greenhouse gases.

When researchers observe natural changes in clouds and temperature, they have traditionally assumed that the temperature change caused the clouds to change, and not the other way around. To the extent that the cloud changes actually cause temperature change, this can ultimately lead to overestimates of how sensitive Earth's climate is to our greenhouse gas emissions.

This seemingly simple mix-up between cause and effect is the basis of a new paper that will appear in the "Journal of Climate." The paper¹s lead author, Dr. Roy W. Spencer, a principal research scientist at The University of Alabama in Huntsville, believes the work is the first step in demonstrating why climate models produce too much global warming.

Spencer and his co-author, principal research scientist William (Danny) Braswell, used a simple climate model to demonstrate that something as seemingly innocuous as daily random variations in cloud cover can cause year-to-year variation in ocean temperature that looks like -- but isn't -- "positive cloud feedback," a warmth-magnifying process that exists in all major climate models.

"Our paper is an important step toward validating a gut instinct that many meteorologists like myself have had over the years," said Spencer, "that the climate system is dominated by stabilizing processes, rather than destabilizing processes -- that is, negative feedback rather than positive feedback."

The paper doesn't disprove the theory that global warming is manmade.

Instead, it offers an alternative explanation for what we see in the climate system which has the potential for greatly reducing estimates of mankind's impact on Earth's climate.

"Since the cloud changes could conceivably be caused by known long-term modes of climate variability -- such as the Pacific Decadal Oscillation, or El Nino and La Nina -- some, or even most, of the global warming seen in the last century could simply be due to natural fluctuations in the climate system," Spencer said.

While the paper's two peer reviewers, both climate model experts, agreed that the issue is a legitimate one, Spencer knows the new paper will be controversial, with some claiming that the impact of the mix-up between cause and effect will be small.

"But we really won't know until much more work is done," Spencer said.

"Unfortunately, so far we have been unable to figure out a way to separate cause and effect when observing natural climate variability. That's why most climate experts don't like to think in terms of causality, and instead just examine how clouds and temperature vary together.

"Our work has convinced me that cause and effect really do matter. If we get the causation wrong, it can greatly impact our interpretation of what nature has been trying to tell us. Unfortunately, in the process it also makes the whole global warming problem much more difficult to figure out."

Phil Gentry | newswise
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>