Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Has Global Warming Research Misinterpreted Cloud Behavior?

12.06.2008
When researchers observe natural changes in clouds and temperature, they have assumed that temperature change caused the clouds to change, and not the other way around. This can lead to overestimates of how sensitive Earth's climate is to greenhouse gas emissions.

Climate experts agree that the seriousness of manmade global warming depends greatly upon how clouds in the climate system respond to the small warming tendency from the extra carbon dioxide mankind produces.

To figure that out, climate researchers usually examine natural, year-to-year fluctuations in clouds and temperature to estimate how clouds will respond to humanity’s production of greenhouse gases.

When researchers observe natural changes in clouds and temperature, they have traditionally assumed that the temperature change caused the clouds to change, and not the other way around. To the extent that the cloud changes actually cause temperature change, this can ultimately lead to overestimates of how sensitive Earth's climate is to our greenhouse gas emissions.

This seemingly simple mix-up between cause and effect is the basis of a new paper that will appear in the "Journal of Climate." The paper¹s lead author, Dr. Roy W. Spencer, a principal research scientist at The University of Alabama in Huntsville, believes the work is the first step in demonstrating why climate models produce too much global warming.

Spencer and his co-author, principal research scientist William (Danny) Braswell, used a simple climate model to demonstrate that something as seemingly innocuous as daily random variations in cloud cover can cause year-to-year variation in ocean temperature that looks like -- but isn't -- "positive cloud feedback," a warmth-magnifying process that exists in all major climate models.

"Our paper is an important step toward validating a gut instinct that many meteorologists like myself have had over the years," said Spencer, "that the climate system is dominated by stabilizing processes, rather than destabilizing processes -- that is, negative feedback rather than positive feedback."

The paper doesn't disprove the theory that global warming is manmade.

Instead, it offers an alternative explanation for what we see in the climate system which has the potential for greatly reducing estimates of mankind's impact on Earth's climate.

"Since the cloud changes could conceivably be caused by known long-term modes of climate variability -- such as the Pacific Decadal Oscillation, or El Nino and La Nina -- some, or even most, of the global warming seen in the last century could simply be due to natural fluctuations in the climate system," Spencer said.

While the paper's two peer reviewers, both climate model experts, agreed that the issue is a legitimate one, Spencer knows the new paper will be controversial, with some claiming that the impact of the mix-up between cause and effect will be small.

"But we really won't know until much more work is done," Spencer said.

"Unfortunately, so far we have been unable to figure out a way to separate cause and effect when observing natural climate variability. That's why most climate experts don't like to think in terms of causality, and instead just examine how clouds and temperature vary together.

"Our work has convinced me that cause and effect really do matter. If we get the causation wrong, it can greatly impact our interpretation of what nature has been trying to tell us. Unfortunately, in the process it also makes the whole global warming problem much more difficult to figure out."

Phil Gentry | newswise
Further information:
http://www.uah.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>