Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocky water source on firm foundations

11.06.2008
Getting water from rock could be a whole lot easier than getting blood from a stone. Gypsum, a rocky mineral is abundant in desert regions where fresh water is usually in very short supply but oil and gas fields are common.

Writing in International Journal of Global Environmental Issues, Peter van der Gaag of the Holland Innovation Team, in Rotterdam, The Netherlands, has hit on the idea of using the untapped energy from oil and gas flare-off to release the water locked in gypsum.

Fresh water resources are scarce and will be more so with the effects of global climate change. Finding alternative sources of water is an increasingly pressing issue for policy makers the world over. Gypsum, explains van der Gaag could be one such resource. He has discussed the technology with people in the Sahara who agree that the idea could help combat water shortages, improve irrigation, and even make some deserts fertile.

Chemically speaking, gypsum is calcium sulfate dihydrate, and has the chemical formula CaSO4.2H2O. In other words, for every unit of calcium sulfate in the mineral there are two water molecules, which means gypsum is 20% water by weight.

van der Gaag suggests that a large-scale, or macro, engineering project could be used to tap off this water from the vast deposits of gypsum found in desert regions, amounting to billions of cubic metres and representing trillions of litres of clean, drinking water.

The process would require energy, but this could be supplied using the energy from oil and gas fields that is usually wasted through flaring. Indeed, van der Gaag explains that it takes only moderate heating, compared with many chemical reactions, to temperatures of around 100 Celsius to liberate water from gypsum and turn the mineral residue into bassanite, the anhydrous form. "Such temperatures can be reached by small-scale solar power, or alternatively, the heat from flaring oil wells can be used," he says. He adds that, "Dehydration under certain circumstances starts at 60 Celsius, goes faster at 85 Celsius, and faster still at 100 degrees. So in deserts - where there is abundant sunlight - it is very easy to do."

van der Gaag points out that the dehydration of gypsum results in a material of much lower volume than the original mineral, so the very process of releasing water from the rock will cause local subsidence, which will then create a readymade reservoir for the water. Tests of the process itself have proved successful and the Holland Innovation Team is planning a pilot study in a desert location.

"The macro-engineering concept of dewatering gypsum deposits could solve the water shortage problem in many dry areas in the future, for drinking purposes as well as for drip irrigation," concludes van der Gaag.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=18642

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>