Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost threatened by rapid melt of Arctic sea ice

11.06.2008
The rate of climate warming over northern Alaska, Canada, and Russia could more than triple during periods of rapid sea ice loss, according to a new study.
The findings raise concerns about the thawing of permafrost, or permanently frozen soil, and the potential consequences for sensitive ecosystems, human infrastructure, and the release of additional greenhouse gases.

"Our study suggests that, if sea-ice continues to contract rapidly over the next several years, Arctic land warming and permafrost thaw are likely to accelerate," says lead author David Lawrence of the National Center for Atmospheric Research (NCAR).

The study will be published Friday, 13 June, in Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

The research, conducted by scientists from NCAR and the National Snow and Ice Data Center (NSIDC), was spurred in part by events last summer, when the extent of Arctic sea ice shrank to more than 30 percent below average, setting a modern-day record.
From August to October last year, air temperatures over land in the western Arctic were also unusually warm, reaching more than 2 degrees Celsius (4 degrees Fahrenheit) above the 1978-2006 average and raising the question of whether or not the unusually low sea-ice extent and warm land temperatures were related.

To investigate this question, Lawrence and his colleagues analyzed climate change simulations generated by the NCAR-based Community Climate System Model. Previous analysis of these simulations suggested that a sustained period of rapid ice loss lasting roughly 5 to 10 years can occur when the ice thins enough.
During such an event, the model revealed, the minimum sea-ice extent can drop by an area greater than the size of Alaska and Colorado combined.

The team finds that, during episodes of rapid sea-ice loss, the rate of Arctic land warming is 3.5 times greater than the average 21st century warming rates predicted in global climate models. While this warming is largest over the ocean, the simulations suggest that it can penetrate as far as 1500 kilometers (about 900 miles) inland.
The simulations also indicate that the warming acceleration during such events is especially pronounced in autumn. The decade during which a rapid sea-ice loss event occurs could see autumn temperatures warm by as much as 5 degrees C (9 degrees F) along the Arctic coasts of Russia, Alaska, and Canada.

Lawrence and his colleagues then used the model to study the influence of accelerated warming on permafrost and found that in areas where permafrost is already at risk, such as central Alaska, a period of abrupt sea-ice loss could lead to rapid soil thaw. This situation, when summer thaw extends more deeply than the next winter's freeze, can lead to a talik, which is a layer of permanently unfrozen soil sandwiched between the seasonally frozen layer above and the perennially frozen layer below. A talik allows heat to build more quickly in the soil, hastening the long-term thaw of permafrost.

Arctic soils are believed to hold 30 percent or more of all the carbon stored in soils worldwide. Although researchers are uncertain what will happen to this carbon as soils warm and permafrost thaws, one possibility is that the thaw will initiate significant additional emissions of carbon dioxide or the more potent greenhouse gas, methane.

About a quarter of the Northern Hemisphere's land contains permafrost, defined as soil that remains below 0 degrees C (32 degrees F) for at least two years. Recent warming has degraded large sections of permafrost, with pockets of soil collapsing as the ice within it melts. The results include buckled highways, destabilized houses, and "drunken forests" of trees that lean at wild angles.

"An important unresolved question is how the delicate balance of life in the Arctic will respond to such a rapid warming," Lawrence says. "Will we see, for example, accelerated coastal erosion, or increased methane emissions, or faster shrub encroachment into tundra regions if sea ice continues to retreat rapidly?"

The study sheds light on how interconnected the Arctic system is, says NSIDC co-author Andrew Slater. "The loss of sea ice can trigger widespread changes that would be felt across the region."

The study was funded by the U.S. Department of Energy and by the National Science Foundation, NCAR's sponsor.

Title:
"Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss"
Authors:
David M. Lawrence, Robert A. Tomas, Marika M. Holland, and Clara
Deser: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA;

Andrew G. Slater: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA.

Citation:
Lawrence, D. M., A. G. Slater, R. A. Tomas, M. M. Holland, and C. Deser (2008), Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss, Geophys. Res. Lett., 35, L11506, doi:10.1029/2008GL033985.
Contact information for coauthors:
David Lawrence, NCAR Scientist, +1 (303) 497-1384, dlawren@ucar.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>