Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the World Cup... the dancing continues in space

09.07.2002


The Brazilian World Cup celebrations may have started to die down, but in space the never-ending football match between the Sun and Earth continues. And watching this match closely are Salsa, Samba, Rumba and Tango, the four satellites that make up the Cluster mission. They are performing their Brazilian dances 119 000 kilometres above our heads.

With all the grace and skill of the Brazilian players on the football field, the spacecraft making up the Cluster quartet are currently changing their tactical positions to get a different view of the Sun`s effects on Earth`s magnetosphere. The Cluster spacecraft have been marking the activity of the Sun, and the powerful particles it kicks towards Earth, for two years. In particular, the four spacecraft are studying the outer edges of Earth`s magnetosphere, which are stretched and pulled in different directions as they are bombarded by the Sun`s particles.

As they dance around each other, the Cluster satellites can move close together with only 100 km between them to get a close-up view of these tiny particles. Then they can pull away from each other as far back as 20 000 km to get the bigger picture. Breakthrough data from Cluster confirmed that the outer regions of the magnetosphere are constantly being rocked by `big waves` that resemble ocean rollers.

For this particular dance step, Cluster will be withdrawing from a close-up formation to a distance of 3800 km. This is the third time that Cluster has changed its configuration since it began its operations.

Studying the physics of the magnetosphere is fundamental for us because although we rely on the Sun for its light and warmth, not all its gifts are so beneficial. The stream of invisible charged particles flashes towards Earth at speeds of up to 1000 kilometres per second, while explosions on the Sun regularly send millions of tonnes of gas our way.

If we did not have Earth`s magnetosphere to protect us, our attitude towards the Sun would be very different. Even with this natural protective bubble wrapped around us, solar particles can sometimes enter Earth`s upper atmosphere, creating enormous electrical currents around our planet, which can have dramatic consequences. As well as creating the beautiful coloured light displays of the auroras, or Northern and Southern Lights, these currents can in fact lead to widespread power blackouts, damage to communications satellites and navigation systems, and even corrosion in oil pipelines.

"The Sun and the Earth play a never-ending football game," says Philippe Escoubet, Cluster project scientist. "The Sun is kicking particles towards Earth, which is the goal, and our magnetosphere acts as the goalkeeper. Some of the particles are deflected by the magnetosphere, but some get past it, scoring goals which disrupt Earth`s activities. Sometimes the Sun is very quiet, but when it`s active we get a lot of balls flying in this direction."

Philippe Escoubet | AlphaGalileo
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>