Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the World Cup... the dancing continues in space

09.07.2002


The Brazilian World Cup celebrations may have started to die down, but in space the never-ending football match between the Sun and Earth continues. And watching this match closely are Salsa, Samba, Rumba and Tango, the four satellites that make up the Cluster mission. They are performing their Brazilian dances 119 000 kilometres above our heads.

With all the grace and skill of the Brazilian players on the football field, the spacecraft making up the Cluster quartet are currently changing their tactical positions to get a different view of the Sun`s effects on Earth`s magnetosphere. The Cluster spacecraft have been marking the activity of the Sun, and the powerful particles it kicks towards Earth, for two years. In particular, the four spacecraft are studying the outer edges of Earth`s magnetosphere, which are stretched and pulled in different directions as they are bombarded by the Sun`s particles.

As they dance around each other, the Cluster satellites can move close together with only 100 km between them to get a close-up view of these tiny particles. Then they can pull away from each other as far back as 20 000 km to get the bigger picture. Breakthrough data from Cluster confirmed that the outer regions of the magnetosphere are constantly being rocked by `big waves` that resemble ocean rollers.

For this particular dance step, Cluster will be withdrawing from a close-up formation to a distance of 3800 km. This is the third time that Cluster has changed its configuration since it began its operations.

Studying the physics of the magnetosphere is fundamental for us because although we rely on the Sun for its light and warmth, not all its gifts are so beneficial. The stream of invisible charged particles flashes towards Earth at speeds of up to 1000 kilometres per second, while explosions on the Sun regularly send millions of tonnes of gas our way.

If we did not have Earth`s magnetosphere to protect us, our attitude towards the Sun would be very different. Even with this natural protective bubble wrapped around us, solar particles can sometimes enter Earth`s upper atmosphere, creating enormous electrical currents around our planet, which can have dramatic consequences. As well as creating the beautiful coloured light displays of the auroras, or Northern and Southern Lights, these currents can in fact lead to widespread power blackouts, damage to communications satellites and navigation systems, and even corrosion in oil pipelines.

"The Sun and the Earth play a never-ending football game," says Philippe Escoubet, Cluster project scientist. "The Sun is kicking particles towards Earth, which is the goal, and our magnetosphere acts as the goalkeeper. Some of the particles are deflected by the magnetosphere, but some get past it, scoring goals which disrupt Earth`s activities. Sometimes the Sun is very quiet, but when it`s active we get a lot of balls flying in this direction."

Philippe Escoubet | AlphaGalileo
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>