Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the World Cup... the dancing continues in space

09.07.2002


The Brazilian World Cup celebrations may have started to die down, but in space the never-ending football match between the Sun and Earth continues. And watching this match closely are Salsa, Samba, Rumba and Tango, the four satellites that make up the Cluster mission. They are performing their Brazilian dances 119 000 kilometres above our heads.

With all the grace and skill of the Brazilian players on the football field, the spacecraft making up the Cluster quartet are currently changing their tactical positions to get a different view of the Sun`s effects on Earth`s magnetosphere. The Cluster spacecraft have been marking the activity of the Sun, and the powerful particles it kicks towards Earth, for two years. In particular, the four spacecraft are studying the outer edges of Earth`s magnetosphere, which are stretched and pulled in different directions as they are bombarded by the Sun`s particles.

As they dance around each other, the Cluster satellites can move close together with only 100 km between them to get a close-up view of these tiny particles. Then they can pull away from each other as far back as 20 000 km to get the bigger picture. Breakthrough data from Cluster confirmed that the outer regions of the magnetosphere are constantly being rocked by `big waves` that resemble ocean rollers.

For this particular dance step, Cluster will be withdrawing from a close-up formation to a distance of 3800 km. This is the third time that Cluster has changed its configuration since it began its operations.

Studying the physics of the magnetosphere is fundamental for us because although we rely on the Sun for its light and warmth, not all its gifts are so beneficial. The stream of invisible charged particles flashes towards Earth at speeds of up to 1000 kilometres per second, while explosions on the Sun regularly send millions of tonnes of gas our way.

If we did not have Earth`s magnetosphere to protect us, our attitude towards the Sun would be very different. Even with this natural protective bubble wrapped around us, solar particles can sometimes enter Earth`s upper atmosphere, creating enormous electrical currents around our planet, which can have dramatic consequences. As well as creating the beautiful coloured light displays of the auroras, or Northern and Southern Lights, these currents can in fact lead to widespread power blackouts, damage to communications satellites and navigation systems, and even corrosion in oil pipelines.

"The Sun and the Earth play a never-ending football game," says Philippe Escoubet, Cluster project scientist. "The Sun is kicking particles towards Earth, which is the goal, and our magnetosphere acts as the goalkeeper. Some of the particles are deflected by the magnetosphere, but some get past it, scoring goals which disrupt Earth`s activities. Sometimes the Sun is very quiet, but when it`s active we get a lot of balls flying in this direction."

Philippe Escoubet | AlphaGalileo
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>