Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Glacial Earthquakes Shakes Up Idea of How Ice Streams Move

09.06.2008
Learning from the "stick/slip" phenomenon may assist in long-range climate studies

New research that integrates seismic recordings with Global Positioning System (GPS) measurements indicates that a 7,000-square-mile region of the Whillians Ice Stream in West Antarctica moves more than two feet twice every day in an earthquake-like pattern equivalent to a Magnitude 7 temblor.

The findings were published in this week's edition of the journal Nature by a group of scientists that includes investigators from Washington University in St. Louis, Penn State University and the University of Newcastle in Great Britain. The National Science Foundation (NSF) funded the U.S. researchers.

Seismologists use the magnitude scale to describe the seismic energy released by an earthquake. An earthquake measured at between 7.0 and 7.9 on the scale is considered "major," and can cause serious damage over large areas in populated regions of the world. Not including the events described in the new findings, there are an estimated 20 such quakes worldwide each year.

In an earthquake, stress builds between two plates on the Earth's crust as the energy of their movement accumulates. Finally, one plate or the other moves, causing shudders and jolts at the Earth's surface.

A similar movement was observed in the Whillians Ice Stream by the research team. Using an array of 19 GPS sensors and seismic sensors deployed as part of the NSF-funded TransAntarctic Mountains Seismic Experiment (TAMSEIS) and the Global Seismic Network, the researchers say they have measured what they are calling a "stick-slip" interaction on the massive ice stream. The seismic signals were recorded as far away as Australia, a distance of more than 6,400 kilometers (4,000 miles).

The "stick-slip" pattern in the ice sheet runs counter to the image of ice streams as flowing at a constant speed, and may be significant in understanding the wider range of ice-stream dynamics.

Scientists know surprisingly little about the physics of stick-slip ice-sheet movement and are eager to know more as they try to comprehend the wide-ranging dynamics of ice sheets and how ice streams--the "frozen rivers" that flow from the interiors of ice sheets into the oceans--may react to a warming climate.

Although this study was restricted to a single ice stream, the new findings document behavior that runs counter to how scientists generally have perceived glacial motion.

"Glaciologists model the flow of glaciers using the assumption that it's basically a kind of creeping kind of motion. But recently we've been seeing seismic signals coming from a number of ice streams and glaciers, and no one's been able to interpret them," said Douglas Wiens, a professor of Earth and planetary sciences at Washington University in St. Louis, who led the research team.

Sridhar Anandakrishnan, one of the Penn State investigators, said, "This is a different mode of ice-stream movement that could be really important for understanding how all ice streams develop and evolve."

The "stick-slip" events on the Whillians Ice Stream occur twice a day and appear to be related to the daily tidal action of the Ross Sea. During each slip, a 96 by 193 kilometer (60 by 120 mile) region of the the ice stream, which is 609 meters (almost 2000 feet) thick, moves as much as .67 meters (2.2 feet) in about 25 minutes. Because of the relatively long time over which the slip takes place, scientists standing right on the slipping ice stream feel nothing. In contrast, most rock earthquakes, which can take place in as little as a few seconds, are felt intensely by people in the area.

The new findings themselves are neutral in their implications about global warming. But they are significant, because they add another piece to the mosaic of scientific understanding of ice dynamics. A comprehesive report issued last November by the Intergovernmental Panel on Climate Change (IPCC) indicates that a major uncertainty in the predictions of change made by current climate models is the level of future sea level rise caused by ice-sheet changes. The IPCC report further notes that the dynamics of ice sheets is currently a major unknown factor in efforts to predict sea-level rise.

"What we don't want to do is to indicate that these signals tell us that global warming is getting worse," said Wiens. "It's more that we need to better to understand the physics of these masses of ice."

But, he added, for all of the scientific concern about the fate of the ice sheets in a warming climate, much more needs to be learned about why or how ice sheets and ice streams behave the way they do.

"A big puzzle is why this particular ice stream shows this slip-stick behavior and others don't, and we don't really understand why," Wiens said. "Our results show that the stick-slip motion originates from a sticky region on the bed of the ice stream where friction is higher, perhaps due to the absence of water. Also we know that this ice stream is slowing down. Perhaps the sticky spot is responsible for both phenomena."

Added Anandakrishnan, "What is apparent from these results is that the conditions beneath the glaciers and ice streams is critically important in the flow of those masses of ice. Without a better understanding of the subglacial environment, our ability to model and predict future behavior of ice sheets and sea level will be hampered."

Peter West | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>