Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report confirms drilling, not earthquake, caused Java mud volcano

09.06.2008
A two-year old mud volcano which is still spewing huge volumes of mud, has displaced more than 30,000 people and caused millions of dollars worth of damage was caused by the drilling of a gas exploration well, an international team of scientists has concluded.

The most detailed scientific analysis to date disproves the theory that an earthquake that happened two-days before the mud volcano erupted in East Java, Indonesia, was potentially to blame.

The report by British, American and Indonesian and Australian scientists is published this week in the academic journal Earth and Planetary Science Letters. It outlines and analyses a detailed record of operational incidents on the drilling of a gas exploration well, Banjar-Panji-1*.

Lead author, Prof Richard Davies of Durham University, UK, published research in January 2007 which argued the drilling was most likely to blame for the eruption of the ‘Lusi’ mud volcano on May 29 2006.

This theory was challenged by the company that drilled the well and some experts who argued that the Yogyakarta earthquake two days before the eruption, which had an epicentre 250km from the mud volcano, was the cause.

Graduate student Maria Brumm and Prof Michael Manga of University of California, Berkeley undertook a systematic study to test the claims that the eruption was caused by this earthquake. They found that none of the ways earthquakes trigger eruptions could have played a role at Lusi.

Prof Michael Manga, of University of California, Berkeley, said: “We have known for hundreds of years that earthquakes can trigger eruptions. In this case, the earthquake was simply too small and too far away.”

The new report concludes the effect of the earthquake was minimal because the change in pressure underground due to the earthquake would have been tiny. Instead, scientists are “99 per cent” certain drilling operations were to blame.

Prof Davies, of Durham University’s Centre for Research into Earth Energy Systems (CeREES) explained: “We show that the day before the mud volcano started there was a huge ‘kick’ in the well, which is an influx of fluid and gas into the wellbore. We show that after the kick the pressure in the well went beyond a critical level.”

“This resulted in the leakage of the fluid from the well and the rock formations to the surface – a so called ‘underground blowout’. This fluid picked up mud during its accent and Lusi was born.

He said chances of controlling this pressure would have been increased if there was more protective casing in the borehole.

Prof Davies added: “We are more certain than ever that the Lusi mud volcano is an unnatural disaster and was triggered by drilling the Banjar-Panji-1 well.”

Prof Manga added: “While this is a most unfortunate disaster, it will leave us with a better understanding of the birth, life and death of a volcano.”

Lusi is still flowing at 100,000 cubic metres per day, enough to fill 53 Olympic swimming pools.

Recent research which Prof Davies was involved in showed it is collapsing by up to three metres overnight and could subside to depths of more than 140 metres, having a significant environmental impact on the surrounding area for years to come.

* The well is operated by oil and gas company Lapindo Brantas, which has confirmed the published data is correct.

Claire Whitelaw | alfa
Further information:
http://www.dur.ac.uk/news/allnews/?itemno=6575
http://www.durham.ac.uk/news

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>