Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcano taming

06.06.2008
Could macro-scale chemical engineering be used to stop a volcanic lava flow in its tracks and save potentially thousands of lives and homes when the next eruption occurs?

That's the question R.D. Schuiling of Geochem Research BV, based in The Netherlands, asks in the current issue of the Inderscience Publication, International Journal of Global Environmental Issues.

During the 1960s, Schuiling pioneered the discipline of geochemical engineering, which involves the use of natural processes to solve environmental and civil engineering problems. He recently turned his attention to the ongoing problem of how to tame volcanic lava flows. Lava flows regularly threaten and sometimes destroy human settlements.

In 1973, the Icelanders had some success slowing the advance of lava from Heimaey by dousing the flow with huge volumes of seawater. Meanwhile in Sicily, the town of Zafferana was saved from being ravaged by the 1991-1993 eruption cycle of Etna by huge earth walls built to divert the lava flow.

Schuiling believes a geochemical approach might be effective in controlling lava flows across the globe. He explains that certain common rocks, namely dolomite, or limestone, will react strongly with hot lava at 1100-1200 Celsius. The chemical reaction that ensues is highly endothermic, which means it requires heat, and this would be supplied by the hot lava.

The decarbonation of limestone by the hot lava will therefore rapidly cool the volcanic outpourings, making it far more viscous and quicker to solidify. The reaction will leave behind solid calcium and magnesium oxide mixtures - pyroxenes or melilites depending on the specific type of lava. The process would also release some carbon dioxide.

He suggests that large chunks of dolomite or limestone blocks could be thrown on to lava from the sides, or from above by helicopters or airplanes, or even by an aerial cable system passing over the flow. An alternative approach might be to quickly build a wall of limestone blocks in the path of the advancing lava flow. In places where a future lava flow would cause great material damage, such walls could even be constructed as a forward defence before a new eruption.

Albert Ang | alfa
Further information:
http://www.inderscience.com

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>