Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large methane release could cause abrupt climate change as happened 635 million years ago

30.05.2008
UCR-led research team says methane-triggered global warming ended last 'snowball' ice age; dramatically reorganized Earth system

An abrupt release of methane, a powerful greenhouse gas, about 635 million years ago from ice sheets that then extended to Earth’s low latitudes caused a dramatic shift in climate, triggering a series of events that resulted in global warming and effectively ended the last “snowball” ice age, a UC Riverside-led study reports.

The researchers posit that the methane was released gradually at first and then in abundance from clathrates – methane ice that forms and stabilizes beneath ice sheets under specific temperatures and pressures. When the ice sheets became unstable, they collapsed, releasing pressure on the clathrates which began to degas.

“Our findings document an abrupt and catastrophic means of global warming that abruptly led from a very cold, seemingly stable climate state to a very warm also stable climate state with no pause in between,” said Martin Kennedy, a professor of geology in the Department of Earth Sciences, who led the research team.

“This tells us about the mechanism, which exists, but is dormant today, as well as the rate of change,” he added. “What we now need to know is the sensitivity of the trigger: how much forcing does it take to move from one stable state to the other, and are we approaching something like that today with current carbon dioxide warming.”

Study results appear in the May 29 issue of Nature.

According to the study, methane clathrate destabilization acted as a runaway feedback to increased warming, and was the tipping point that ended the last snowball Earth. (The snowball Earth hypothesis posits that the Earth was covered from pole to pole in a thick sheet of ice for millions of years at a time.)

“Once methane was released at low latitudes from destabilization in front of ice sheets, warming caused other clathrates to destabilize because clathrates are held in a temperature-pressure balance of a few degrees,” Kennedy said. “But not all the Earth’s methane has been released as yet. These same methane clathrates are present today in the Arctic permafrost as well as below sea level at the continental margins of the ocean, and remain dormant until triggered by warming.

“This is a major concern because it’s possible that only a little warming can unleash this trapped methane. Unzippering the methane reservoir could potentially warm the Earth tens of degrees, and the mechanism could be geologically very rapid. Such a violent, zipper-like opening of the clathrates could have triggered a catastrophic climate and biogeochemical reorganization of the ocean and atmosphere around 635 million years ago.”

Today, the Earth’s permafrost extends from the poles to approximately 60 degrees latitude. But during the last snowball Earth, which lasted from 790 to 635 million years ago, conditions were cold enough to allow clathrates to extend all the way to the equator.

According to Kennedy, the abruptness of the glacial termination, changes in ancient ocean-chemistry, and unusual chemical deposits in the oceans that occurred during the snowball Earth ice age have been a curiosity and a challenge to climate scientists for many decades.

“The geologic deposits of this period are quite different from what we find in subsequent deglaciation,” he said. “Moreover, they immediately precede the first appearance of animals on earth, suggesting some kind of environmental link. Our methane hypothesis is capable also of accounting for this odd geological, geochemical and paleooceanographic record.”

Also called marsh gas, methane is a colorless, odorless gas. As a greenhouse gas, it is about 30 times more potent than carbon dioxide, and has largely been held responsible for a warming event that occurred about 55 million years ago, when average global temperatures rose by 4-8 degrees Celsius.

When released into the ocean-atmosphere system, methane reacts with oxygen to form carbon dioxide and can cause marine dysoxia, which kills oxygen-using animals, and has been proposed as an explanation for major oceanic extinctions.

“One way to look at the present human influence on global warming is that we are conducting a global-scale experiment with Earth’s climate system,” Kennedy said. “We are witnessing an unprecedented rate of warming, with little or no knowledge of what instabilities lurk in the climate system and how they can influence life on Earth. But much the same experiment has already been conducted 635 million years ago, and the outcome is preserved in the geologic record. We see that strong forcing on the climate, not unlike the current carbon dioxide forcing, results in the activation of latent controls in the climate system that, once initiated, change the climate to a wholly different state.”

As part of their research, Kennedy and his colleagues collected hundreds of marine sediment samples in South Australia for stable isotope analysis, an important tool used in climate reconstruction. At UCR, the researchers analyzed the samples and found the broadest range of oxygen isotopic variation ever reported from marine sediments that they attribute to melting waters in ice sheets as well as destabilization of clathrates by glacial meltwater.

Next in their research, Kennedy and his colleagues will work on estimating how much of the temperature change that occurred 635 million years ago was due solely to methane.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>