Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

September launch for ESA's gravity mission GOCE

29.05.2008
A new launch date has been set for GOCE. The change of date is due to precautionary measures taken after the malfunction of an upper-stage section of a Russian Proton launcher. Now confirmed not to affect GOCE's Rockot launcher, the most advanced gravity mission to date is scheduled for lift-off on 10 September 2008.

As a consequence of the new launch date, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite is currently undergoing final flight reconfiguration at ESA-ESTEC in the Netherlands. Shipment to the Plesetsk launch site in northern Russia will take place in July - from where the sleek five-metre long GOCE spacecraft will be carried into its unusually low orbit on a modified

SS-19 Russian Intercontinental Ballistic Missile (ICBM) launcher. The adaptation of the SS-19, called 'Rockot', uses the two original lower stages of the ICBM in conjunction with an upper-stage called Breeze-KM for commercial payloads.

Up until early March this year, GOCE was well on its way to being launched at the end of May. However, as a result of the failure on 15 March of a Proton Breeze-M upper-stage, all launches using Breeze were suspended pending investigations by the Russian State Commission. Although GOCE's Breeze-KM upper-stage is different to the larger Proton Breeze-M, they do share some common elements. The investigations have led to the conclusion that it is safe to use the Breeze-KM as is, resulting in the Russian State Commission clearing GOCE for launch.

Since August last year, the high-tech GOCE spacecraft has been undergoing extensive testing at ESA's test facilities in the Netherlands. The programme included a wide range of qualification tests to ensure that the satellite could withstand the rigours of launch as well as the harsh environment of space. One such series of tests was carried out in the Large Space Simulator where, under vacuum, the extreme heat of the Sun is simulated by lamps and mirrors - subjecting the satellite to 1400 W of power over each square metre of the side of the satellite that faces the Sun.

As well as being designed to fly in an orbit as low as is technically feasible to retrieve the strongest possible gravity signal, the sleek arrow-shaped satellite is ultra-stable to ensure that measurements taken are of true gravity and not influenced by any movement of the satellite. GOCE, therefore, has none of the moving parts often seen on other spacecraft. Since GOCE is designed to orbit the Earth with one side always facing the Sun, one side only is equipped with solar panels.

Due to its low altitude and inclination, once a year the GOCE satellite will experience an eclipse period of 135 days with one eclipse of up to 28 minutes per orbit. A peculiarity of orbital dynamics is that one is free to choose the eclipse period to fall either between October and February or, between April and August by launching either in the morning or in the evening of the launch day.
Now launching in September, it is best to have the eclipses in the April to August time frame. The May launch would still have gone for the eclipse season in winter. The difference in the two configurations is that, as seen from the Sun, the satellite either flies clock- or anti-clockwise around the Earth. This has impact on the satellite configuration and some units have to be moved from one side of the satellite to the other. Thanks to the flexibility of the satellite design, this is a relatively simple operation. Therefore, modifications to accommodate this new flight configuration are about to be carried out at ESA in the Netherlands. When GOCE has been reconfigured, the spacecraft will be transported by aircraft from the Netherlands to Arkhangelsk in Russia, and from there by train to the launch site in Plesetsk for final testing.

Once launched, GOCE will begin to map global variations in the gravity field with unprecedented detail and accuracy. This will result in a unique model of the geoid, which is the surface of equal gravitational potential defined by the gravity field – crucial for deriving accurate measurements of ocean circulation and sea-level change, both of which are affected by climate change. GOCE-derived data is also much needed to understand more about processes occurring inside the Earth and for use in practical applications such as surveying and levelling.

Danilo Muzi | EurekAlert!
Further information:
http://www.esa.int

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>