Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scorched Earth millenium map shows 'fire scars'

26.05.2008
New map shows burning hotspots on Earth

A geographer from the University of Leicester has produced for the first time a map of the scorched Earth for every year since the turn of the Millennium.

Dr Kevin Tansey, of the Department of Geography, a leading scientist in an international team, created a visual impression of the fire scars on our planet between 2000 and 2007. The work was funded by the Joint Research Centre of the European Commission.

The map reveals that between 3.5 and 4.5 million km2 of vegetation burns on an annual basis. This is an area equivalent to the European Union (EU27) and larger than the country of India that is burnt every year.

The information is vital for scientists and agencies involved in monitoring global warming, measuring and understanding pollutants in the atmosphere, managing forests and controlling fire and even for predicting future fire occurrence.

The research has been published in the journal Geophysical Research Letters.

Dr Tansey, a Lecturer in Remote Sensing at the University of Leicester, said: “We have produced, for the first time, a global data base and map of the occurrence of fire scars covering the period 2000-2007. Prior to this development, data were only available for the year 2000. With seven years of data, it is not possible to determine if there is an increasing trends in the occurrence of fire, but we have significant year-to-year differences, of the order of 20%, in the area that is burnt.

“The work was undertaken with colleagues from the Joint Research Centre of the European Commission (Italy) and the Université catholique de Louvain (Belgium).

“This unique data set is in much demand by a large community of scientists interested in climate change, vegetation monitoring, atmospheric chemistry and carbon storage and flows.

“We have used the VEGETATION instrument onboard the SPOT European satellite, which collects reflected solar energy from the Earth’s surface, providing global coverage on almost a daily basis.

“When vegetation burns the amount of reflected energy is altered, long enough for us to make an observation of the fire scar. Supercomputers located in Belgium were used to process the vast amounts of satellite data used in the project. At the moment, we have users working towards predicting future fire occurrence and fire management issues in the Kruger Park in southern Africa”.

“The majority of fires occur in Africa. Large swathes of savannah grasslands are cleared every year, up to seven times burnt in the period 2000-2007 (see Figure 1). The system is sustainable because the grass regenerates very quickly during the wet season. From a carbon perspective, there is a net balance due to the regenerating vegetation acting as a carbon sink. Fires in forests are more important as the affected area becomes a carbon source for a number of years.

“The forest fires last summer in Greece and in Portugal a couple of years back, remind us that we need to understand the impact of fire on the environment and climate to manage the vegetation of the planet more effectively. Probably 95% of all vegetation fires have a human source; crop stubble burning, forest clearance, hunting, arson are all causes of fire across the globe. Fire has been a feature of the planet in the past and under a scenario of a warmer environment will certainly be a feature in the future”.

Dr. Kevin Tansey | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>