Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic explorer delivers unique snow-depth data for CryoSat

26.05.2008
Following a formidable 106-day trek across the Arctic, which ended with the two Arctic Arc expedition members relying on Envisat images to guide them safely through disintegrating sea-ice, intrepid polar explorer Alain Hubert recently visited ESA to handover a unique set of snow-depth measurements.

To coincide with the launch of the International Polar Year (IPY) 2007-2008, Alain Hubert and fellow explorer Dixie Dansercoer ventured out onto the sea-ice to embark upon a trek from Siberia to northern Greenland via the North Pole – a route never before attempted.

Throughout the expedition, the polar explorers had to endure temperatures down to -40ºC, encounters with polar bears and the incredible physical demand of having to drag heavy sledges across pressure ridges of sea-ice piled up several metres high as well as cross open water where the ice had fractured. Nevertheless, Alain and Dixie took time out every 50 km to make snow-depth measurements for the CryoSat mission.

"It wasn't really difficult to take these measurements for CryoSat," said Alain, "It became part of our routine. The difficult part of the expedition was putting one foot in front of the other when the ice is breaking up around you. As co-founder of the International Polar Foundation, a scientist as well as a seasoned explorer - I aim to form a kind of 'bridge' between science and society. Observing the changes that are occurring in the fragile Arctic environment will help lead to a better understanding of the effects of climate change, and ultimately the Earth system as a whole. CryoSat is an exciting mission that will help answer questions about the polar ice so we were very happy to contribute through our Arctic Arc expedition."

Since the Earth Explorer CryoSat mission, which is due for launch next year, is designed to measure tiny variations in the thickness of floating sea-ice and ice on land, understanding the effects that the overlying snow can have on the measurement of ice elevation is of huge importance. To this end, ESA has in place a dedicated validation programme that involves a number of field campaigns in the polar regions. Measurements collected on the ice and from the air are crucial to fully understand and characterise the geophysical uncertainties in the CryoSat products so that the data CryoSat delivers is interpreted as accurately as possible.

During a presentation held this week at ESA-ESTEC in the Netherlands Alain handed over the dataset to Richard Francis ESA's Project Manager for CryoSat, who commented that, "While snow-depth information holds the key to producing accurate maps of ice-thickness change over time, there are relatively few basic ground-measurements readily available. So when Alain offered to take measurements during his expedition, the CryoSat project was extremely grateful."

In turn, Alain and Dixie were also grateful for help provided by an existing ESA satellite. Under an ESA IPY project, they were able to rely on images from Envisat to guide them through some dangerous ice-break up. Alain explained, "As we approached the coast of northern Greenland, the sea ice in the Lincoln Sea began to break up chaotically - something we really weren't expecting. We realised there was no way we could take our planned route to reach land. Fortunately, however, we were guided by expedition router who relied on information provided by the Danish Technical University using data from ESA's Envisat satellite to help us circumnavigate the open waters and eventually reach land safely."

Malcolm Davidson ESA's CryoSat Validation Manager noted that, "ESA has now released the snow-depth data collected by the Arctic Arc expedition to the CryoSat Validation and Retrieval Team. The team has been quite eager to get the data and start the analysis. Ultimately we expect that – in conjunction with the core ESA-sponsored airborne campaigns and similar initiatives from other polar expeditions – the data will help us better measure ice-thickness changes over time from space with CryoSat-2."

Malcolm Davidson | alfa
Further information:
http://www.esa.int/esaEO/SEMNJE1YUFF_planet_0.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>