Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in Science cites impact of anthropogenic nitrogen on ocean biology, atmospheric CO2

20.05.2008
Data sets and long-term studies by University of Miami's Prospero help to provide historic context

Since the 1980’s Dr. Joseph M. Prospero, professor of Marine and Atmospheric Chemistry at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science, has pioneered studies in the worldwide measurement of aerosols, fine particles suspended in the atmosphere and carried by winds.

His team’s work focuses on the aerosol chemistry of the marine atmosphere. They are particularly interested in the long-range transport of pollutants from the continents to the oceans and their impact on climate and on biogeochemical processes in ocean waters.

Starting in 1980 Prospero established a network of island stations in the North and South Pacific Oceans. These stations made continuous measurements of the concentration of major aerosol species that play a role in climate: mineral dust, nitrate, sulfate, and sea salt. The network was eventually extended to the Indian Ocean and Antarctica. Throughout the 80’s and into the late 90’s the UM team maintained a total of 30 stations in constant operation in all ocean regions. The data obtained are unique and they have played a critical role in the development and testing of the global chemical transport models used in the recent climate assessment carried out by Intergovernmental Panel on Climate Change.

Prospero’s data plays a central role in a paper that appears in the May 16 issue of Science, “Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean”. Spearheaded by Dr. Robert Duce from Texas A&M, the study highlights the importance of the Earth’s nitrogen cycle, and its vital link to the global carbon cycle, especially the atmospheric concentration of CO2, the greenhouse gas responsible for most of the global warming effects observed during the past century.

Scientists have long known that biological processes in the ocean play an important role in the global carbon cycle. Algae and other forms of marine life take up CO2 and nutrients from ocean surface waters and, through the process of photosynthesis, reproduce and grow rapidly in total mass. This process draws CO2 from the atmosphere and partially offsets the growth of CO2 from human activities. Every year approximately one-third of the CO2 released into the atmosphere because of human activities, is taken up by the oceans.

Consequently any processes that affect the ocean uptake of CO2 can have an effect on global warming.

Various nitrogen compounds, especially nitrates and ammonium, play an important role in ocean’s photosynthesis by acting as fertilizers that stimulate the growth of marine organisms. Because of human activities, the emission rates of these compounds have increased greatly over the last 100 years. The transport of these compounds to the oceans, mostly through the atmosphere, have acted to increase the draw-down of CO2 from the atmosphere.

The paper in Science compares emissions of nitrogen compounds in the year 1860, before humans had a great impact on pollution emissions, with current emissions. Today pollutant nitrogen deposition to the oceans accounts for about ten percent of the draw-down of CO2 from the atmosphere to the ocean. However, the deposition of these pollutants also results in the increased emissions of nitrous oxide, N2O, which is also a potent greenhouse gas. The net effect is that the N2O emissions offset about one-third of the effects of the increased drawdown of CO2 due to pollution deposition.

The team who wrote the paper appearing in Science also estimates emissions for the year 2020 using scenarios from the IPCC report. “All of us are concerned that the amount of anthropogenic nitrogen transported to the oceans will to continue to rise in the future,” commented Prospero.

Founded in the 1940's, the University of Miami's Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. The School currently has more than 1,300 alumni around the globe.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>