Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in Science cites impact of anthropogenic nitrogen on ocean biology, atmospheric CO2

20.05.2008
Data sets and long-term studies by University of Miami's Prospero help to provide historic context

Since the 1980’s Dr. Joseph M. Prospero, professor of Marine and Atmospheric Chemistry at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science, has pioneered studies in the worldwide measurement of aerosols, fine particles suspended in the atmosphere and carried by winds.

His team’s work focuses on the aerosol chemistry of the marine atmosphere. They are particularly interested in the long-range transport of pollutants from the continents to the oceans and their impact on climate and on biogeochemical processes in ocean waters.

Starting in 1980 Prospero established a network of island stations in the North and South Pacific Oceans. These stations made continuous measurements of the concentration of major aerosol species that play a role in climate: mineral dust, nitrate, sulfate, and sea salt. The network was eventually extended to the Indian Ocean and Antarctica. Throughout the 80’s and into the late 90’s the UM team maintained a total of 30 stations in constant operation in all ocean regions. The data obtained are unique and they have played a critical role in the development and testing of the global chemical transport models used in the recent climate assessment carried out by Intergovernmental Panel on Climate Change.

Prospero’s data plays a central role in a paper that appears in the May 16 issue of Science, “Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean”. Spearheaded by Dr. Robert Duce from Texas A&M, the study highlights the importance of the Earth’s nitrogen cycle, and its vital link to the global carbon cycle, especially the atmospheric concentration of CO2, the greenhouse gas responsible for most of the global warming effects observed during the past century.

Scientists have long known that biological processes in the ocean play an important role in the global carbon cycle. Algae and other forms of marine life take up CO2 and nutrients from ocean surface waters and, through the process of photosynthesis, reproduce and grow rapidly in total mass. This process draws CO2 from the atmosphere and partially offsets the growth of CO2 from human activities. Every year approximately one-third of the CO2 released into the atmosphere because of human activities, is taken up by the oceans.

Consequently any processes that affect the ocean uptake of CO2 can have an effect on global warming.

Various nitrogen compounds, especially nitrates and ammonium, play an important role in ocean’s photosynthesis by acting as fertilizers that stimulate the growth of marine organisms. Because of human activities, the emission rates of these compounds have increased greatly over the last 100 years. The transport of these compounds to the oceans, mostly through the atmosphere, have acted to increase the draw-down of CO2 from the atmosphere.

The paper in Science compares emissions of nitrogen compounds in the year 1860, before humans had a great impact on pollution emissions, with current emissions. Today pollutant nitrogen deposition to the oceans accounts for about ten percent of the draw-down of CO2 from the atmosphere to the ocean. However, the deposition of these pollutants also results in the increased emissions of nitrous oxide, N2O, which is also a potent greenhouse gas. The net effect is that the N2O emissions offset about one-third of the effects of the increased drawdown of CO2 due to pollution deposition.

The team who wrote the paper appearing in Science also estimates emissions for the year 2020 using scenarios from the IPCC report. “All of us are concerned that the amount of anthropogenic nitrogen transported to the oceans will to continue to rise in the future,” commented Prospero.

Founded in the 1940's, the University of Miami's Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. The School currently has more than 1,300 alumni around the globe.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>