Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist’s Discovery May Unlock Secrets to Start of Life on Earth

03.07.2002


Scientist continues to build case for origin of plate tectonics



A Saint Louis University geologist has unearthed further evidence in his mounting case that shifting of the continents -- and perhaps life on Earth -- began much earlier than many scientists believe.

Tim Kusky, a professor of Earth and atmospheric sciences, has discovered the world’s first large intact pieces of oceanic mantle from the planet’s earliest period, the Archean. The nearly mile-long section of rock, which is billions of years old, may hold clues as to when life developed on the planet. The major finding was reported today in the July issue of GSA-Today -- the premier journal of the Geological Society of America.


Working with colleagues from Peking University, Kusky uncovered the rare find at a site near the Great Wall where last year the team discovered the planet’s oldest complete section of oceanic crust. Reported in Science, their work recently was heralded by the Chinese government as one of the most significant scientific findings of 2001.

This latest discovery may prove even more remarkable. For years, scientists have longed to find large pieces of the planet’s deep interiors. But until now, they’ve had to rely on only tiny fragments to study. Formed tens of kilometers below the ancient sea floor, this new discovery’s massive mantle rocks are preserved in a highly faulted belt 100 kilometers long. Unlike the sea floor samples Kusky found last year, the mantle rocks preserve 2.5 billion-year-old minerals that hold clues to the origin of plate tectonics. The minerals, including an unusual type of chromite deposit only known from deep ocean floor rocks appear to have been deformed at extremely high temperatures before they were completely crystallized by volcanic

This shows that the mantle rocks were flowing away from the ridges on the oceanic floor, evidence that the continents began shifting more than 500 million years earlier than now widely believed. Because the discovery shows that the plates were moving in that early period, these findings could have a more far-reaching effect on theories related to the development of life on the planet. Just when single-celled organisms evolved into more complex organisms has been contested for years. Because hot volcanic vents on the sea floor may have provided the nutrients and temperatures needed for life to flourish, Kusky said it’s possible that life developed and diversified around these vents as the plates started stirring.

Kusky and Peking University’s J.H. Li have initiated a series of studies on the section of ancient mantle and it’s minerals aimed at understanding the conditions of the Earth 2.5 billion years ago. Their work is being funded by U.S. National Science Foundation, the Chinese National Natural Science Foundation, Saint Louis University and Peking University. The Chinese government also has dedicated a natural geologic park at the site of the discovery.

Saint Louis University is a leading Catholic, Jesuit, research institution ranked among the top 50 national, doctoral universities as a best value by U.S. News & World Report. Founded in 1818, the University strives to foster the intellectual and spiritual growth of its more than 11,000 students through a broad array of undergraduate, graduate and professional degree programs on campuses in St. Louis and Madrid, Spain.

Clayton Berry | EurekAlert!
Further information:
http://www.geosociety.org/
http://www.eas.slu.edu/People/TMKusky/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>