Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist’s Discovery May Unlock Secrets to Start of Life on Earth

03.07.2002


Scientist continues to build case for origin of plate tectonics



A Saint Louis University geologist has unearthed further evidence in his mounting case that shifting of the continents -- and perhaps life on Earth -- began much earlier than many scientists believe.

Tim Kusky, a professor of Earth and atmospheric sciences, has discovered the world’s first large intact pieces of oceanic mantle from the planet’s earliest period, the Archean. The nearly mile-long section of rock, which is billions of years old, may hold clues as to when life developed on the planet. The major finding was reported today in the July issue of GSA-Today -- the premier journal of the Geological Society of America.


Working with colleagues from Peking University, Kusky uncovered the rare find at a site near the Great Wall where last year the team discovered the planet’s oldest complete section of oceanic crust. Reported in Science, their work recently was heralded by the Chinese government as one of the most significant scientific findings of 2001.

This latest discovery may prove even more remarkable. For years, scientists have longed to find large pieces of the planet’s deep interiors. But until now, they’ve had to rely on only tiny fragments to study. Formed tens of kilometers below the ancient sea floor, this new discovery’s massive mantle rocks are preserved in a highly faulted belt 100 kilometers long. Unlike the sea floor samples Kusky found last year, the mantle rocks preserve 2.5 billion-year-old minerals that hold clues to the origin of plate tectonics. The minerals, including an unusual type of chromite deposit only known from deep ocean floor rocks appear to have been deformed at extremely high temperatures before they were completely crystallized by volcanic

This shows that the mantle rocks were flowing away from the ridges on the oceanic floor, evidence that the continents began shifting more than 500 million years earlier than now widely believed. Because the discovery shows that the plates were moving in that early period, these findings could have a more far-reaching effect on theories related to the development of life on the planet. Just when single-celled organisms evolved into more complex organisms has been contested for years. Because hot volcanic vents on the sea floor may have provided the nutrients and temperatures needed for life to flourish, Kusky said it’s possible that life developed and diversified around these vents as the plates started stirring.

Kusky and Peking University’s J.H. Li have initiated a series of studies on the section of ancient mantle and it’s minerals aimed at understanding the conditions of the Earth 2.5 billion years ago. Their work is being funded by U.S. National Science Foundation, the Chinese National Natural Science Foundation, Saint Louis University and Peking University. The Chinese government also has dedicated a natural geologic park at the site of the discovery.

Saint Louis University is a leading Catholic, Jesuit, research institution ranked among the top 50 national, doctoral universities as a best value by U.S. News & World Report. Founded in 1818, the University strives to foster the intellectual and spiritual growth of its more than 11,000 students through a broad array of undergraduate, graduate and professional degree programs on campuses in St. Louis and Madrid, Spain.

Clayton Berry | EurekAlert!
Further information:
http://www.geosociety.org/
http://www.eas.slu.edu/People/TMKusky/

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>