Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Computer Model Promises Detailed Picture of Worldwide Climate

02.07.2002


Capping two years of research, a nationwide group of over 100 scientists has created a powerful new computer model of the Earth’s climate. The model surpasses previous efforts by successfully incorporating the impact of such variables as ocean currents and changes in land-surface temperatures.



Researchers will use the model, called CCSM-2 (Community Climate System Model, version 2) to probe how our climate works and to experiment with “what-if” scenarios to predict what our climate may be like in the future. The model will also look at past climate. For example, researchers plan to perform an extended, multicentury simulation of past shifts in the climate’s equilibrium.

The model’s increased capabilities will permit new types of studies, such as the “Flying Leap Experiment,” which will track fossil fuel carbon emissions as they are dissolved in the oceans and subsequently released back into the atmosphere.


Jeffrey Kiehl, a key leader in development of the model at the National Center for Atmospheric Research, expects the CCSM-2 to play an integral role in the next climate assessment by the Intergovernmental Panel on Climate Change, the international organization that issues periodic assessments of global climate change.

Based at NCAR, the model is funded by the National Science Foundation and the Department of Energy.

“The model is better [than its earlier version] at simulating phenomena with worldwide climate implications, such as El Niño,” says Kiehl. “The new version has higher spatial resolution in both oceans and sea ice, and the atmosphere is represented by a larger number of vertical layers."

To achieve the extensive modifications in the latest version, which was released last month, scientists applied the model to specific problems. For example, they weighed the climatic impacts of past volcanic eruptions, fluctuations in ocean salinity, changes in land vegetation, and the thickness of sea ice. The resulting model has far more data than the earlier version, allowing scientists to make more detailed climate projections.

“A coordinated community activity on this scale is rare in the climate sciences," says Kiehl. The contributors worked in groups on land, ocean, sea ice, and other components of the model toward the single, common goal of capturing the Earth’s climate system. It was truly a collaborative effort.”

Since 1983, NCAR scientists have been refining global climate models that are freely available to researchers worldwide. CCSM-2, which supercedes the first CCSM created in 1998, will be used to produce improved simulations of average climate and climate variability.

Richard Anthes, president of the University Corporation for Atmospheric Research (which manages and operates NCAR) says: “The CCSM effort is a great example of the trend towards increasing collaboration among research institutions on complex and important scientific problems.”

NCAR’s primary sponsor is the National Science Foundation. • David Hosansky

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>