Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Computer Model Promises Detailed Picture of Worldwide Climate

02.07.2002


Capping two years of research, a nationwide group of over 100 scientists has created a powerful new computer model of the Earth’s climate. The model surpasses previous efforts by successfully incorporating the impact of such variables as ocean currents and changes in land-surface temperatures.



Researchers will use the model, called CCSM-2 (Community Climate System Model, version 2) to probe how our climate works and to experiment with “what-if” scenarios to predict what our climate may be like in the future. The model will also look at past climate. For example, researchers plan to perform an extended, multicentury simulation of past shifts in the climate’s equilibrium.

The model’s increased capabilities will permit new types of studies, such as the “Flying Leap Experiment,” which will track fossil fuel carbon emissions as they are dissolved in the oceans and subsequently released back into the atmosphere.


Jeffrey Kiehl, a key leader in development of the model at the National Center for Atmospheric Research, expects the CCSM-2 to play an integral role in the next climate assessment by the Intergovernmental Panel on Climate Change, the international organization that issues periodic assessments of global climate change.

Based at NCAR, the model is funded by the National Science Foundation and the Department of Energy.

“The model is better [than its earlier version] at simulating phenomena with worldwide climate implications, such as El Niño,” says Kiehl. “The new version has higher spatial resolution in both oceans and sea ice, and the atmosphere is represented by a larger number of vertical layers."

To achieve the extensive modifications in the latest version, which was released last month, scientists applied the model to specific problems. For example, they weighed the climatic impacts of past volcanic eruptions, fluctuations in ocean salinity, changes in land vegetation, and the thickness of sea ice. The resulting model has far more data than the earlier version, allowing scientists to make more detailed climate projections.

“A coordinated community activity on this scale is rare in the climate sciences," says Kiehl. The contributors worked in groups on land, ocean, sea ice, and other components of the model toward the single, common goal of capturing the Earth’s climate system. It was truly a collaborative effort.”

Since 1983, NCAR scientists have been refining global climate models that are freely available to researchers worldwide. CCSM-2, which supercedes the first CCSM created in 1998, will be used to produce improved simulations of average climate and climate variability.

Richard Anthes, president of the University Corporation for Atmospheric Research (which manages and operates NCAR) says: “The CCSM effort is a great example of the trend towards increasing collaboration among research institutions on complex and important scientific problems.”

NCAR’s primary sponsor is the National Science Foundation. • David Hosansky

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar/

More articles from Earth Sciences:

nachricht Small- and mid-sized cities particularly vulnerable
29.09.2016 | Universität Stuttgart

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

Small- and mid-sized cities particularly vulnerable

29.09.2016 | Earth Sciences

Discovery of an Extragalactic Hot Molecular Core

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>