Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron 'snow' helps maintain Mercury's magnetic field

09.05.2008
New scientific evidence suggests that deep inside the planet Mercury, iron “snow” forms and falls toward the center of the planet, much like snowflakes form in Earth’s atmosphere and fall to the ground.

The movement of this iron snow could be responsible for Mercury’s mysterious magnetic field, say researchers from the University of Illinois and Case Western Reserve University. In a paper published in the April issue of the journal Geophysical Research Letters, the scientists describe laboratory measurements and models that mimic conditions believed to exist within Mercury’s core.

“Mercury’s snowing core opens up new scenarios where convection may originate and generate global magnetic fields,” said U. of I. geology professor Jie (Jackie) Li. “Our findings have direct implications for understanding the nature and evolution of Mercury’s core, and those of other planets and moons.”

Mercury is the innermost planet in our solar system and, other than Earth, the only terrestrial planet that possesses a global magnetic field. Discovered in the 1970s by NASA’s Mariner 10 spacecraft, Mercury’s magnetic field is about 100 times weaker than Earth’s. Most models cannot account for such a weak magnetic field.

Made mostly of iron, Mercury’s core is also thought to contain sulfur, which lowers the melting point of iron and plays an important role in producing the planet’s magnetic field.

“Recent Earth-based radar measurements of Mercury’s rotation revealed a slight rocking motion that implied the planet’s core is at least partially molten,” said Illinois graduate student Bin Chen, the paper’s lead author. “But, in the absence of seismological data from the planet, we know very little about its core.”

To better understand the physical state of Mercury’s core, the researchers used a multi-anvil apparatus to study the melting behavior of an iron-sulfur mixture at high pressures and high temperatures.

In each experiment, an iron-sulfur sample was compressed to a specific pressure and heated to a specific temperature. The sample was then quenched, cut in two, and analyzed with a scanning electron microscope and an electron probe microanalyzer.

“Rapid quenching preserves the sample’s texture, which reveals the separation of the solid and liquid phases, and the sulfur content in each phase,” Chen said. “Based on our experimental results, we can infer what is going on in Mercury’s core.”

As the molten, iron-sulfur mixture in the outer core slowly cools, iron atoms condense into cubic “flakes” that fall toward the planet’s center, Chen said. As the iron snow sinks and the lighter, sulfur-rich liquid rises, convection currents are created that power the dynamo and produce the planet’s weak magnetic field.

Mercury’s core is most likely precipitating iron snow in two distinct zones, the researchers report. This double-snow state may be unique among the terrestrial planets and terrestrial-like moons in our solar system.

“Our findings provide a new context into which forthcoming observational data from NASA’s MESSENGER spacecraft can be placed,” Li said. “We can now connect the physical state of our innermost planet with the formation and evolution of terrestrial planets in general.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

nachricht NASA flights gauge summer sea ice melt in the Arctic
25.07.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>